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Abstract—Reliability analysis of complex systems is a critical
issue in reliability engineering. Motivated by practical needs, this
paper investigates a Bayesian approach for system reliability as-
sessment and prediction with multilevel heterogeneous data sets.
Two major imperatives have been handled in the proposed ap-
proach, which provides a comprehensive Bayesian framework for
the integration of multilevel heterogeneous data sets. In particular,
the pass-fail data, lifetime data, and degradation data at different
system levels are combined coherently for system reliability anal-
ysis. This approach goes beyond the alternatives that deal with
solely multilevel pass-fail or lifetime data, and presents a more
practical tool for real engineering applications. In addition, the in-
dices for reliability assessment and prediction are constructed co-
herently within the proposed Bayesian framework. It gives rise to
a natural manner of incorporating this approach into a decision-
making procedure for system operation and management. The ef-
fectiveness of the proposed approach is illustrated with reliability
analysis of a navigation satellite.

Index Terms—Bayesian reliability, multilevel heterogeneous
data sets (MHDS), reliability assessment, reliability prediction.
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I. INTRODUCTION

M ODERN products and systems are becoming increas-
ingly complex. Reliability assessments and predictions

about such systems have attracted great attention in reliability
engineering [1], [2]. One of the critical challenges induced by
complex systems is to implement system reliability analysis
with limited full-system tests. Nevertheless, there may be abun-
dant heterogeneous data at different system levels that need to
be incorporated. Taking a satellite as an example, before it is
launched into space, engineers must figure out whether the satel-
lite is reliable enough to be launched. However, due to limited
time and resources, engineers cannot conduct full-system tests.
The only available reliability information for system reliability
analysis is gathered from various stakeholders, each responsible
for various subsystems and components. Such data sets are col-
lected from different reliability tests, and distributed in different
system levels. The pass-fail, lifetime, and degradation data sets
are generally included. To perform a reliable system analysis of
the satellite, one needs to utilize these multilevel heterogeneous
data sets (MHDS) in a comprehensive way. Moreover, the in-
dices for reliability assessment and prediction should be derived
coherently based on these data sets. In other words, it is impor-
tant to incorporate theMHDS into the system reliability analysis
process.
Such examples are pervasive throughout different industries,

e.g., the reliability analysis of high-speed trains [3], [4], nuclear
power plants [5], [6], remote wind generators [7], and all kinds
of munitions [8], [9]. All of these systems are facing the chal-
lenge of integrating MHDS for reliability analysis. This chal-
lenge has also been highlighted in a panel discussion in Tech-
nometrics [10], and the work by Anderson-Cook [11]. There is
also a strong demand in system operational research and engi-
neering design to deal with reliability analysis of complex sys-
tems with MHDS. This demand has been identified as one of the
most critical problems in the field of engineering design, which
has not been resolved sufficiently [12], [13]. Accordingly, the
objective of this paper is to develop a method for system re-
liability analysis with multilevel pass-fail, lifetime, and degra-
dation data sets. Two important analytical concerns have been
addressed in the proposed approach: 1) a coherent framework
for integrating MHDS using the Bayesian approach, and 2) a
natural manner of deriving the indices for reliability assessment
and prediction within the proposed framework.
To highlight our contributions, it is useful to review the

relevant research in Bayesian reliability analysis by integrating
MHDS. Such problems were initially studied by Mastran
[14], Mastran & Singpurwalla [15], Barlow [16], Martz et al.
[17], and Martz & Waller [18]. They put forward methods
for incorporating multilevel binomial data or lifetime data
using a Bayesian method that was mainly carried out in an
approximation. However, the coherency and efficiency of their
methods become growing concerns with increases in system
complexity and data types. Benefiting from the implemen-
tation of the Markov chain Monte Carlo (MCMC) methods
for Bayesian analysis, fully Bayesian methods for system
reliability analysis have been extensively studied. Methods for
system reliability analysis with lifetime or degradation data

have been put forward by Huang et al. [19], Wang et al. [20],
and Ye et al. [21]. Additionally, Huang & An [22] presented a
discrete stress-strength interference model for system reliability
analysis with dependent strength. Wang et al. [23] presented
a Bayesian updating mechanism to deal with reliability as-
sessment with evolving, insufficient, and subjective data sets.
These methods were mainly constructed based on the lifetime
or degradation data at the system level, which were effective for
a system with lots of system-level data. However, when dealing
with a system with limited full-system tests, the effectiveness
and the precision of these methods were challenged.
Considering the research on system reliability analysis with

multilevel data sets, Johnson et al. [24] proposed a fully hierar-
chical Bayesian method for reliability assessment of multi-com-
ponent systems with binomial data. This work was extended by
Hamada et al. [25] to a system described in a fault tree with bino-
mial data as well. Wilson et al. [26] briefly summarized system
reliability analysis with multilevel data. Later, Anderson-Cook
et al. [27], Shane Reese et al. [28], and Jackson & Mosleh [29]
carried on this research by separately focusing on situations
with multilevel pass-fail data and lifetime data. The majority of
these methods dealt with a specific type of reliability data, such
as binomial or lifetime data. However, when facing situations
with MHDS, these methods cannot be used because their model
frameworks were limited for specific data types.
The review of related literature reveals that little attention has

been paid to system reliability analysis with MHDS. Limited
exceptions are the methods proposed by Wilson et al. [26], An-
derson-Cook et al. [30], and Guo & Wilson [31]. In particular,
the methods proposed byWilson et al. [26], andAnderson-Cook
et al. [30] were mainly used to demonstrate the possibility of
incorporating MHDS. Both of them were developed under par-
ticular system structures with specific assumptions about the
data types. On the other hand, the method developed by Guo
& Wilson [31] provided a generic framework for reliability es-
timation with MHDS. However, the indices for reliability anal-
ysis within their method have not been studied, which makes
the applicability of their method quite limited, especially for the
practical imperatives highlighted above. As one can see, reli-
ability analysis by incorporating MHDS as considered in this
paper has not been extensively studied in the literature.
The aim of this paper is to develop a fully Bayesian approach

for reliability analysis by integrating multilevel pass-fail, life-
time, and degradation data. To overcome the limitation of data
types which can be analyzed using the methods proposed by
Johnson et al. [24],Wang et al. [20], and Shane Reese et al. [28],
the proposed approach provides a more generic method for re-
liability analysis of complex systems with MHDS. A coherent
information integration framework has been developed to carry
out reliability analysis by integrating multilevel pass-fail, life-
time, and degradation data. On the other hand, rather than devel-
oping another framework limited to reliability estimation, such
as those proposed by Wilson et al. [26], Anderson-Cook et al.
[30], and Guo & Wilson [31], we carry out a coherent study
of reliability assessment and prediction with MHDS. By devel-
oping the reliability indicators within the Bayesian framework,
the proposed approach can be naturally incorporated into a deci-
sion-making procedure for system operation and management.
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Fig. 1. Reliability block diagram of a simplified satellite system.

The remainder of this paper is organized as follows. We
begin by introducing a general system, and the related MHDS
in Section II. In Section III, the Bayesian approach for reliability
analysis with MHDS is presented in a graphic form with the
kernel strategy. Then, the model within the proposed Bayesian
approach for information integration is developed step by
step in Section IV. The indices for reliability assessment and
prediction derived based on the information integration model
are presented in Section V. We illustrate the proposed approach
with an application to a navigation satellite in Section VI.
Finally, we conclude the paper with a discussion.

II. A GENERAL SYSTEM AND MHDS

A. A General System Structure

Generally, a system may consist of multiple components
which are connected in a series, parallel, or series-parallel
structure. Without loss of generality, a series -out-of- : G
system is studied for illustration. By making equal to or
1, the -out-of- : G structure respectively becomes a series or
a parallel structure. Various system structures can be included
as special cases of the series -out-of- : G structure. In this
paper, we develop the proposed approach by demonstrating on
a simplified system structure, which is derived from a satellite
in a satellite navigation system. The reliability block diagram
(RBD) of the satellite is depicted in Fig. 1. It consists of three
subsystems in the form of series -out-of- : G structures with
being a 2-out-2 structure, being a 1-out-2 structure, and
being a 2-out-3 structure. Note that a fault tree that contains

AND and OR gates can be easily transformed to a RBD [32].
In this paper, we use the following structure. The compo-

nents, subsystems, and system in the RBD are referred to as
nodes, such as and in Fig. 1. The direct subordinates
of are the nodes in the next lower level, which constitute
node . The set of direct subordinates of is denoted as .
In Fig. 1, for instance, system has a direct subordinates set

.

B. The Multilevel Heterogeneous Data Sets

Reliability data for a complex system are generally gath-
ered from various sources in different forms. The MHDS
investigated in this paper include the pass-fail, lifetime, and
degradation data sets collected from separate reliability tests for

the components, subsystems, and system. Specifically, the first
group of data sets is the pass-fail, lifetime, and degradation data
sets collected for individual components. The second group is
the pass-fail, and lifetime data sets collected for the subsystems,
and the overall system. The third source of information is prior
information regarding the reliability of particular nodes before
these data sets are collected. The paper is dedicated to modeling
and incorporating the multilevel pass-fail, lifetime, and degra-
dation data sets. The third source of information is combined
illustratively in the case study. Three kinds of prior information
are incorporated, including the similarity of reliability for
groups of components, the informative priors for particular
components, and diffuse prior information (non-informative
priors) for the remaining components. For more information
about the prior information derivation, please refer to Seth [33],
Bedford et al. [34], and Gutierrez-Pulido et al. [35].

III. THE PROPOSED BAYESIAN APPROACH

The proposed approach is originated for integrating the in-
formation contained in MHDS. The approach is developed by
addressing two major concerns: 1) parametrically modeling the
multilevel system structure to preserve the probabilistic con-
structs defined by the RBD, and 2) coherently combining the
heterogeneous data sets through the derivation of their joint like-
lihood function and the formulation of the parameters’ joint pos-
terior distribution. Accordingly, the proposed approach consists
of three indispensable frameworks: the framework for modeling
a multilevel system structure, the framework for combining het-
erogeneous data sets, and the framework for deriving indices
for reliability analysis. A descriptive flowchart of the proposed
Bayesian approach is given in Fig. 2.
The first framework is a substitution strategy for modeling

multilevel system structures. It is carried out by re-expressing
the reliability function of high level node in terms of the
corresponding functions of its direct subordinates, which are
contained in set . The structure function derived from the
RBD is used to construct the inherent functional relationship.
The second framework is a combining strategy for integrating

the heterogeneous data sets. It is implemented by multiplying
together the likelihood contribution of each data type to obtain
a joint likelihood function. These likelihood contributions are
separately developed according to the specific data types and
parametric models of particular nodes.
The third framework is a Bayesian inference strategy for in-

formation integration and indices derivation. It is carried out by
the construction of a Bayesian model for MHDS, and the for-
mulization of the model based reliability indices for system reli-
ability analysis. The Bayesian model is constructed by deriving
the posterior distribution of model parameters using the joint
likelihood function and specified prior distributions. The model
based reliability indices are developed in a fully Bayesian way.
These indices are generally presented -conditionally on par-
ticular model parameters. As the joint posterior distribution of
model parameters are obtained, the inferences of these indices
are generated by averaging over the posterior distribution of re-
lated model parameters.
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Fig. 2. Descriptive flowchart of the proposed approach.

IV. BAYESIAN APPROACH FOR MHDS

In this section, the Bayesian model for MHDS is constructed
following the basic framework of the proposed approach: (i)
modeling a multilevel system structure, (ii) deriving a joint
likelihood function for heterogeneous data sets, and (iii) con-
structing a Bayesian model for MHDS.

A. Modeling a Multilevel System Structure

The multilevel system structure is modeled parametrically to
provide a coherent information transition platform. As depicted
in Fig. 2, the multilevel system structure is modeled based on
parametric models of components . A substi-
tution strategy is developed for modeling the high level nodes

. This substitution is implemented by re-ex-
pressing the reliability function of with reliability functions
of its direct subordinates. For instance, in Fig. 2, the reliability
function of is re-expressed by the reliability functions of
its direct subordinates in set based on the structure func-
tion . Respectively, let , and denote
the reliability function, and probability density function (PDF)
of component with parameters . The reliability function,
and PDF of the higher level node are expressed as

(1)

where denotes model parameters involved in the reliability
function of node . is the structure function of node
defined by the RBD, which describes the reliability relationship
between the node and its direct subordinates. , and
are respectively the subordinate subsystems, and components
of node within the direct subordinates set .

B. Combining MHDS

The heterogeneous data sets are incorporated through their
contributions to the joint likelihood of the Bayesian model, as
depicted in Fig. 2. In this subsection, the reliability models and
the likelihood contributions of the heterogeneous data sets are
modeled and analyzed.
1) Pass-Fail Data, and Their Likelihood Contributions: Let

denote the node or with pass-fail data. Suppose
lots of are subject to test with random sampling. At every
different observation time points , samples are tested

separately, where , and . We observe
that the number of units that pass each test is . Let
be the r.v. following a -binomial distribution. The probability
that a unit passes the test at time is determined by
its reliability at that time, as . The model for the
pass-fail data is described as

(2)

For node with reliability function
, the likelihood of the pass-fail data set

can be described as

(3)

where the , , and with , and
in this pass-fail data set for node are separately included
in the matrices , , and . The parameters involved
in the reliability function of node as described in (1) are
included in the parameter vector .
2) Lifetime Data and Their Likelihood Contributions: Let

denote the nodes or with lifetime data. Suppose
units are tested. A group of right-censored lifetime data is

collected, which includes exact failure time points with
, and right-censored time points with
, where . The likelihood contri-

bution of the exact failure time is . The likeli-
hood contribution of the right-censored time is in the form
of . Then, the likelihood function for the lifetime
data can be obtained as

(4)
where the observed lifetime with and with

are separately include in the vectors and .
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The parameters for the reliability function of node are
included in the parameter vector .
The likelihood contribution of lifetime data described

above can be extended to the situation with left-censored
or interval-censored lifetime data. This extension can be
implemented by replacing the likelihood contribution of

by for left-censored time ,
and by for interval-censored
time points .
3) Degradation Data and Their Likelihood Contributions:

Let denote the component with degradation data. Sup-
pose components have been tested. The degradation measure-
ments have been observed at each observation time points
, where , and . These degradation

measurements include the measurement errors for each
tested component. Let be the r.v. for the degradation mea-
surement. Given the measurement error ,
the degradation process can be modeled by the distribution

(5)
where denotes the degradation curve of the
component , which is a function of testing time with
parameters . It is the real degradation of this component
aside from the measurement error. This degradation curve is
generally defined by a specific failure mechanism of the com-
ponent . A general review of this degradation model can
be found in the work by Bae et al. [36].
The component fails when the degradation curve

first crosses a predefined threshold value
. As a convention, with the assumption of a monotonically

increasing degradation path, the reliability of the unit is
the probability that the value of is higher than
the lower critical threshold [36].

(6)

Based on the degradationmodel in (5), the likelihood function
for degradation data can be expressed as

(7)

where is the PDF of the standard -normal distribution. The
degradation measurements and with and

are included in the matrices and . Pa-
rameters for the reliability function of are included in the
parameter vector . All the model parameters involved in
the degradation data are included in the parameter vector .
The likelihood contribution derived above can be extended to

other degradation models with slight changes. The degradation
models that are reviewed by Bae et al. [36] or applied in the
literature by Ye et al. [37] can be easily incorporated by substi-
tuting (5) and (7) with the corresponding probability functions
and the implied likelihood functions.

C. Bayesian Model for MHDS

The likelihood function for the MHDS is obtained by multi-
plying together the respective likelihood contributions of these
data sets. Let , , and separately denote the sets
of and that related to the pass-fail, lifetime, and degradation
data. Then the likelihood function for the MHDS is given by

(8)

where includes all the parameters involved in the whole
model.
According to the Bayesian theory, given the prior distribution

of model parameters , the Bayesian model for the MHDS is
obtained as

(9)

where are the joint prior distributions for system model
parameters. As described in Section II part B, three kinds of
prior distributions have been considered in this paper, which re-
flect different considerations for the derivation and choice of
priors. is the joint posterior distribu-
tion of model parameters , which represents the result of in-
tegrating MHDS. The construction of indices for reliability as-
sessment and prediction is based on this posterior distribution.
Obviously, the joint posterior distribution in (9) cannot be

obtained analytically. The MCMC method is utilized to gen-
erate samples of model parameters from this joint posterior dis-
tribution. Meanwhile, the sample-based posterior analysis can
be easily carried out based on these generated posterior sam-
ples. There are two series of MCMC algorithms, namely the
Metropolish algorithms (e.g., Gelfand & Smith [38]), and the
Gibbs samplers (e.g., Smith & Roberts [39]). In addition, a well-
developed software package, the WinBUGS [40], is used to im-
plement the MCMC for the Bayesian model derived above. For
details regarding MCMC and BUGS, readers are referred to the
works by Ntzoufras [41], and Kruschke [42].

D. Model Validation and Justification

As described in Fig. 2, the construction of indices for reli-
ability analysis and prediction are based on the joint posterior
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distribution of model parameters . To present a reliable con-
struction of these reliability indices, it is necessary to test the
adequacy of the proposed Bayesian approach for the MHDS. In
this subsection, we describe a model diagnostic approach based
on the Bayesian goodness-of-fit test introduced by Johnson
[43].
Let denote an i.i.d. data set with the

CDF . Let denote
equally spaced quantiles from a -uniform distribution, and

define and , where is the sample size
of the observation . The procedure of this test is described as
follows.
1) Generate a random sample from the joint posterior dis-
tribution .

2) Calculate the number of observations that
fall into the interval with
for all the intervals as .

3) Calculate the Bayesian test statistic for the random
sample defined by

(10)

4) Repeat steps 1 to 3 for times, and calculate the
probability that with

, denoting the 0.95 quantile of a chi-square
distribution on degrees of freedom.

The fitness of the model can be calibrated by this probability
. According to the procedure, the probability is calculated

in a simulation way. It is based on the posterior distribution of
the proposed Bayesian model and the goodness-of-fit test.
Hence, it is generally reported that of the samples from
the joint posterior distribution of parameters fit the data well.
The higher the probability is, the better the model fits the data
sets.

V. INDICES FOR RELIABILITY ANALYSIS WITH MHDS

In this section, the indices for system reliability assessment
and prediction are constructed. Following the strategy depicted
in Fig. 2, these indices are derived based on the joint posterior
distribution.

A. Indices for Reliability Assessment

When the MHDS are available, it is interesting to assess the
reliability of the system at the present time. Moreover, it is nec-
essary to estimate the residual life of the system with available
data sets. Such assessments are usually adopted to set the op-
eration and management of the system. In this subsection, the
failure rate and residual life distribution are studied in a fully
Bayesian way.
Based on the system reliability function in (1), and the joint

posterior distribution of the parameters in (9), the failure rate
of the system at the present time can be obtained as

(11)

where denotes the available
MHDS. , , and are separately the
PDF, reliability function, and failure rate of the system.
Given that the system has survived up to the present time ,

the probability that the system will survive another interval of
mission time can be calculated by

(12)

The PDF of the residual life can be obtained based on (12)
as

(13)

Similar to the joint posterior distribution in (9), these reli-
ability indices based on the joint posterior distribution cannot
be specified analytically. The simulation based integration is
used to facilitate their calculations. By substituting the gener-
ated posterior samples into the corresponding PDF and relia-
bility functions above, i.i.d. samples for these reliability indices
are obtained. Summary statistics can be easily obtained based
on these random i.i.d. samples. For instance, the integrations
above are approximated by the mean of relative i.i.d. samples.
Moreover, the variances and confidence intervals for these in-
dices can be obtained within this Bayesian framework as well.

B. Indices for Reliability Prediction

When a further system is launched, it is necessary to predict
system reliability at future time points. Such predictions are usu-
ally adopted to set strategies for system operation and warranty.
In this subsection, the reliability as a function of mission time,
and the lower percentile of time-to-failure distribution of the
system, are constructed. The former is used to predict system
reliability in a whole lifetime scale. The latter can be adopted to
describe dependability of the system in a specific mission time
interval.
Based on the Bayesian model for the MHDS, the reliability

of the system as a function of mission time can be obtained as

(14)

Additionally, based on (14), the lower-bound on the
system time-to-failure (time-to-first-failure) can be obtained as

(15)
where is the predicted lifetime of the system defined by
the lower-bound on system time-to-first-failure. is the
failure quantile, which is determined based on the consequence
and the risk of the early failure of the system.
Similar to (11)–(13), the indices for reliability prediction de-

rived above have no analytical forms. The calculations are based
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TABLE I
MULTILEVEL HETEROGENEOUS RELIABILITY DATA FOR THE SATELLITE

on the posterior samples of model parameters using simulation
based integration.

VI. ILLUSTRATIVE EXAMPLE

Reliability assessment and prediction for satellites in a satel-
lite navigation system is carried out in this section to demon-
strate the proposed Bayesian approach. The satellite constella-
tion for a navigation system consists of a number of satellites,
which work in concert for the service of global positioning.
These satellites are distributed in multiple orbits, and catego-
rized in groups. In each group, a predefined number of satellites
are under operation, and the rest are for spare. The performance
of the constellation is determined by the available number of
operational satellites in the constellation. Accordingly, the lo-
gistics for operation and management of this constellation re-
quires precise assessment and prediction of the satellite relia-
bility using available data and information.

A. System Structure and Reliability Data for the Satellite

In general, system level reliability data and information for a
satellite system are sparse, and at times even nonexistent. How-
ever, the test data for its critical subsystems and components are
sufficient. Moreover, as navigation satellites are evolved over
each generation, the basic framework of the satellite is inher-
ited from former satellites (e.g., the satellite bus). Prior infor-
mation from these former satellites about subsystems and com-
ponents that the new satellites inherited are available and abun-
dant. These data can be incorporated for reliability assessment

of newly developed satellites. Besides, during the operation of
the constellation, lifetime data are obtained from failed satel-
lites in particular orbits. The satellites for the navigation con-
stellation in the same orbit are similar. They are all composed
of the same components, and subjected to the same space envi-
ronment. As a result, these lifetime data are used as field data of
similar satellites in the same orbit.
The RBD of the satellite is given in Fig. 1. The MHDS which

are collected during the development, production, and operation
of the satellite are given in Table I. To avoid proprietary issues,
the system structure is simplified, the units of values are omitted,
and the data are modified in a certain way. Largely, however, the
nature of the RBD, the MHDS, and the application of the pro-
posed approach are the same as the original from the perspective
of demonstration of the proposed method for reliability analysis
with MHDS.

B. Bayesian Model for the MHDS

As described in Fig. 2, the first step is to define para-
metric models for the components of the satellite system.
These models are chosen according to the characteristics
of related data sets and the testimony of experts. The -ex-
ponential distribution is adopted to model the reliability of
components , , and as ,

,2,5. The Marshall-Olkin bivariate Weibull distribution
[44] is employed to model the lifetime of the components

and as .
Its CDF is given as
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. The Weibull distri-
bution is used to model the reliability of component

as with
. The degradation data for compo-

nent is modeled with a linear degradation curve as
, where the unit-to-unit

variance is modeled with [26], [31],
and . Then, the reliability function for this
component is obtained as .
The selection of these reliability models for the components is
based on their respective goodness-of-fit test of these models,
and the testimony of experts. The generality of reliability
models included in the example has also been considered in the
selection of these models.
Meanwhile, the prior information is quantified into prior dis-

tributions for the model parameters given above. As described
in Section II-B, three kinds of prior distributions are included
to account for three types of prior information considered in
this paper. The first type of information is the consideration
of the resemblance of reliability between similar components,
which is based on the testimony of experts and information from
previous satellites. The components and are confirmed
sharing some resemblance in their reliability. Their prior distri-
butions are specified in a hierarchical way, where the gamma
distribution is used as the prior distributions for parameters
and . In addition, the hyperparameters of the gamma priors
share the same hyper-prior distributions, which are adopted to
model their similarity in terms of reliability [29]. The second
type of information is the past data and accumulated knowl-
edge of reliability for components , , , and . Prior
distributions are obtained by fitting the past data to some rep-
resentative distributions for prior derivation, where the gamma,
lognormal, and -normal distributions are generally used as rep-
resentative priors. Methods for subjective information quantifi-
cation are adopted to quantify the accumulated knowledge of re-
liability, for instance the probability encodingmethod. Bayesian
information fusion toolkits are used to combine these priors
generated from past data with the ones obtained from subjec-
tive knowledge [45]. The third type of prior distribution is the
diffuse prior distribution, which is used to describe the situa-
tion that no specific prior information is available. Generally
adopted is a representative prior with large variance, or a uni-
form distribution with a relatively large interval, that is also re-
ferred to as a non-informative prior. In this case study, because
component is a newly developed component, prior informa-
tion is lacking for this component. Diffuse prior distributions
are adopted for the model parameters of this component. More
specifically, the prior distributions used for model parameters of
the satellite system are summarized in Table II.
Themultilevel system structure of the satellite is modeled fol-

lowing the substitution strategy depicted in Fig. 2 and (1). The
reliability function of the satellite system , and subsystems
, , , are obtained as follows.

TABLE II
PRIOR DISTRIBUTIONS FOR THE PARAMETERS OF THE SATELLITE SYSTEM

(16)

where with ,
, and .

Using the combining strategy depicted in Fig. 2 and (8), the
joint likelihood function of the MHDS is obtained. With the
prior distribution given in Table II, the joint posterior distribu-
tion for model parameters of the satellite is given as

(17)

where
,

, ,
and . The contributions of the priors and the
likelihood function to this joint posterior distribution are
separately given as
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TABLE III
SUMMARY STATISTICS OF THE POSTERIOR SAMPLES FOR THE PARAMETERS

where the likelihood contributions of relative pass-fail, lifetime,
and degradation data are obtained by substituting relative relia-
bility functions of components, subsystems, and the system as
given in Section V part B into the corresponding (3), (4), and
(7).

C. Calculation: Sampling From the Posterior Distribution
of the Bayesian Model

As described in Section IV, the assessment and prediction of
satellite reliability are carried out by generating samples from
the joint posterior distribution in (17). The WinBUGS software
is used to implement the sampling procedure. 20,000 samples
are generated from this joint posterior distribution with 1,000
samples for burn-in. The posterior quantities and the posterior
confidence intervals of the model parameters are summarized in
Table III.

D. Model Validation, and Justification

As reliability assessment and prediction of the satellite are
based on the joint posterior distribution of the parameters ,
a model diagnostic is implemented to test the fitness of the
proposed Bayesian model. We carry out this testing using the
Bayesian goodness-of-fit test introduced in Section IV part

TABLE IV
SUMMARY STATISTICS OF INDICES FOR SATELLITE RELIABILITY ASSESSMENT

Fig. 3. The PDF of the residual life given with boxplots of the
samples at each time points.

D. By applying the 20,000 posterior samples to the Bayesian
goodness-of-fit test procedure, the testing result for the lifetime
data of is 0.9789. It suggests that 97.89% posterior samples
fit the available system lifetime data well. As the model diag-
nostics are based on the lifetime data in the system level of the
satellite, it is sufficient enough to indicate the fitting of the pro-
posed model for the satellite system. The samples from the joint
posterior distribution can be used to derive indices for satellite
reliability assessment and prediction.

E. Reliability Assessment and Prediction of the Satellite

Considering the operation and management of the satellite
constellation, given the system has survived up to the present
time with the accumulation of the MHDS in Table I, our
primary interest is on the reliability of the satellite at this point
in time. According to the indices derived in Section V part A,
the reliability and the failure rate of the satellite system at the
present time , and the probability that the system will sur-
vive another mission time are obtained and presented in
Table IV. The results are obtained based on the 20,000 posterior
samples. The simulation based integration method described in
Section V is implemented. In addition, the PDF of the residual
life given that the satellite has survived up to the present time

is presented in Fig. 3.
Suppose a new satellite for the satellite constellation is going

to be launched, and we are interested in the reliability of this
new satellite. According to the constructed indices for reliability
prediction in (14), the predicted reliability distribution of the
new satellite is obtained and presented in Fig. 4. It is generated
based on the 20,000 posterior samples using simulation based
integration. Similarly, according to (15), the lower-bounds on
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Fig. 4. The predicted reliability distribution of the new satellite with boxplots
of the samples at each time points.

TABLE V
THE PREDICTED LOWER-BOUND PERCENTILE LIFETIME FOR THE SATELLITE

failure percentiles for the satellite with the failure quantile
, 0.25, 0.5, 0.75, and 0.95 are obtained and presented in

Table V.

VII. DISCUSSION, AND CONCLUSION

In this paper, a fully Bayesian approach for integrating mul-
tilevel heterogeneous data sets for reliability analysis is devel-
oped. Two generic engineering concerns have been addressed:
1) a coherent framework for integrating multilevel heteroge-
neous data sets, which is emphasized on the combination of dif-
ferent types of reliability data within different system levels,
where the pass-fail data, the lifetime data, and the degrada-
tion data are included; and 2) an effective way of obtaining the
indices for reliability assessment and prediction based on the
proposed Bayesian framework. Various reliability indices have
been constructed within the proposed framework for the sake of
system operation and management.
Moreover, the reliability analysis with multilevel hetero-

geneous data sets is implemented through a fully Bayesian
perspective. The proposed Bayesian approach overcomes the
sole objective of reliability assessment, and actually provides
useful reliability indices for system operation and manage-
ment. These indices are embedded in the proposed Bayesian
framework, and calculated based on posterior samples using a
simulation based integration method. In addition, a Bayesian
goodness-of-fit test model diagnostic method is introduced

to facilitate the testing of model fitting, which is critical for
reliability analysis with multilevel heterogeneous data sets.
However, this paper cannot incorporate all possible ways of

considering the Bayesian reliability method for multilevel het-
erogeneous data sets. In particular, the derivation of the prior

distribution and the modeling of degradation data for nodes in
the higher levels of systems are not properly addressed in this
paper. Moreover, the improvement of the MCMC method for
situations with complex data sets is of interest for our future
works.
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