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Abstract
As a bi-level optimization method, collaborative optimization can solve multidisciplinary design optimization problems in
practical engineering effectively. However, if there are high-dimensional couplings in a multidisciplinary design optimiza-
tion problem, a large number of compatibility constraints will be required in collaborative optimization. In this situation,
collaborative optimization will not be suitable to be utilized because of low computational efficiency or divergence issue.
To solve this problem, an efficient interaction balance optimization method is proposed in this article. In interaction bal-
ance optimization method, the simple coordination strategy of interaction balance principle and the distributed optimiza-
tion strategy of collaborative optimization can be integrated effectively. Lagrange multipliers are used instead of
compatibility constraints to maintain the consistency between any two coupled disciplines. Two examples are given to
show the effectiveness of the proposed method.
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Introduction

With the development of engineering systems, concur-
rent engineering (CE) has received increasing attention.
Recently, many CE technologies have been developed
to solve integrated, simultaneous design problems of
engineering systems (Chhabra and Emami, 2014;
Deshmukh et al., 2013; Huang et al., 2011; Hwang et
al., 2014; Meng et al., 2014; Ostrosi et al., 2014; Zhang
et al., 2011, 2013). As a specific implementation of CE
technologies, multidisciplinary design optimization
(MDO) is a powerful method to design complex and
coupled engineering systems (Huang et al., 2011;
Hwang et al., 2014; Meng et al., 2014; Sobieszczanski-
Sobieski and Haftka, 1997; Zhang et al., 2011, 2013). In
MDO, a cost-type objective function is minimized while
multidisciplinary constraints are satisfied. Furthermore,
a coordination strategy is used to make interaction vari-
ables (including shared design variables and linking
variables) satisfying the consistency requirements
between any two coupled disciplines (Jeremy and
Panos, 2005). Based on the coordination strategies,

MDO methods can be categorized into two types:
single-level methods and multilevel methods (Balling
and Wilkinson, 1997; Chen et al., 2002; Hulme and
Bloebaum, 2000; Martins and Lambe, 2013; Tosserams
et al., 2009). Single-level methods generally have a sin-
gle optimizer and use a non-hierarchical structure
directly. Multidisciplinary feasible (MDF; Cramer,
1992; Lambe and Martins, 2012), individual discipline
feasible (IDF; Cramer et al., 1994; Dener and Hicken,
2014; Kodiyalam and Sobieszczanski-Sobieski, 2001;
Yu et al., 2014), and all-at-once (AAO; Haftka, 1994;
Roshanian et al., 2014) are single-level methods.
Multilevel methods modify the relationship of a non-
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hierarchical structure into a hierarchical structure.
Generally, they have system and subsystem levels. Each
level has an optimizer. Therefore, each discipline has a
separate analyzer and can determine design solutions.
Concurrent subspace optimization (CSSO; Liang et al.,
2012; Renaud and Gabriele, 1994; Wujek et al., 1996;
Zhang and Tang, 2015), bi-level integrated system
synthesis (BLISS; Barthelemy and Sobieszczanski-
Sobieski, 1983; Sobieszczanski-Sobieski et al., 2003; Yi
et al., 2008; Zhao and Cui, 2011; Zhou et al., 2014), and
collaborative optimization (CO; Alexandrov and Lewis,
2002; Braun, 1996; Braun and Kroo, 1995; Li et al.,
2014; Tappeta and Renaud, 1997; Zhao et al., 2012) are
multilevel methods.

Although many methods have been proposed, the
developments of MDO are still necessary. On one hand,
the development of engineering systems may make the
existing MDO methods difficult to deal with all new chal-
lenges efficiently. On the other hand, because of the lim-
ited time and cost, designers have to select an appropriate
method among various MDO methods to solve their
problems. More new MDO methods should be developed
to provide more options for designers. For example, the
CO method is suitable to solve a MDO problem for the
distributed engineering system with low couplings.
However, if the distributed engineering system is large
scale, there will be a large number of interaction variables
in the corresponding MDO model. In this situation, CO
method will be low efficient or even cannot converge.

This work is aimed to address the low-efficient issue
of CO. We will focus on the situation where the archi-
tecture of engineering system is distributed and CO is
feasible to use. The question is how can we enhance the
efficiency of CO to solve MDO problems for large-scale
engineering systems? To answer the question, we inte-
grate the coordination strategy of interaction balance
principle (IBP) and the collaborative mechanism of CO,
and propose a new MDO method, which is named as
interaction balance optimization (IBO).

This article is organized as follows. In section ‘‘The
formulation of MDO,’’ the general MDO formulation is
given. In section ‘‘The CO method,’’ the CO method is
briefly reviewed. In section ‘‘IBO,’’ the basic idea of IBO
is discussed in detail. Then the solution procedure of IBO
is proposed. In section ‘‘Examples,’’ a numerical example
and an aircraft conceptual design problem are used to
show the effectiveness of the proposed method. Some
conclusions are presented in section ‘‘Conclusion.’’

The formulation of MDO

In this study, we consider the case that the system
objective is a linear sum of all discipline objectives.
Then a MDO problem can be formulated as

min
Xs,Xi,Yji,Yij

f =
Xn

i= 1

fi Xs,Xi,Yji,Yij

� �

s:t: gi Xs,Xi,Yji,Yij

� �
. 0

hi Xs,Xi,Yji,Yij

� �
=0

XL
i � Xi � XU

i , X
L
s � Xs � XU

s

YL
ij � Yij � YU

ij , Y
L
ji � Yji � YU

ji ,

i, j= 1, 2, . . . , n i 6¼ jð Þ

ð1Þ

where f ( � ) is the system objective; fi( � ) is the ith disci-
pline objective; gi( � ) is the vector of inequality con-
straints in the ith discipline, gi( � ). 0 denotes the
feasible region; hi( � ) is the vector of equality con-
straints in the ith discipline; Xs is the vector of shared
design variables; Xi is the vector of local design vari-
ables in the ith discipline; Y is the vector of linking
variables, Yij denotes the inputs of the jth discipline
and the outputs of the ith discipline, Yji denotes the
inputs of the ith discipline and the outputs of the jth
discipline, the relationship of Yij and Yji can be denoted
as Yij =Yij(Xs,Xi,Yji); superscripts L and U denote the
lower and upper bounds, respectively; n is the total
number of disciplines. The interactions between the
coupled disciplines in a MDO problem is shown in
Figure 1.

The CO method

In MDO, the performance of an engineering system is
driven not only by the performance of individual disci-
plines but also by their interactions. Considering these
interactions in an optimization problem generally
requires a special coordination strategy. In CO, a com-
plex system is decomposed into multiple disciplines.
Then, the original MDO problem in equation (1) is
modified into a system optimization problem as

min
X0s,X

0
i,Y

0
ji,Y

0
ij

f =
Xn

i= 1

fi X0s,X
0
i,Y

0
ji,Y

0
ij

� �

s:t: Ji = X0i � Xi

� �2
+ X0s � Xs

� �2

+ Y0ji � Yji

� �2

+ Y0ij � Yij

� �2

� e,

i, j= 1, 2, . . . , n i 6¼ jð Þ ð2Þ
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1iY

Discipline is , iX X
if

inY niY
Discipline ns , nX X

nf

�
1nY 1nY

Figure 1. Interactions between coupled disciplines.
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and some corresponding discipline optimization prob-
lems as

min
Xs,Xi,Yji

Ji = X0i � Xi

� �2
+ X0s � Xs

� �2

+ Y0ji � Yji

� �2

+ Y0ij � Yij

� �2

s:t: gi Xs,Xi,Yji,Yij

� �
. 0

hi Xs,Xi,Yji,Yij

� �
= 0

XL
i � Xi � XU

i , X
L
s � Xs � XU

s

YL
ij � Yij � YU

ij , Y
L
ji � Yji � YU

ji ,

i, j= 1, 2, . . . , n i 6¼ jð Þ ð3Þ

where Ji is the compatibility constraint in the ith disci-
pline and e is a very small positive number.

The system optimization problem in equation (2)
manages the overall optimization process at system
level. It minimizes the system objective f with the results
(Xs,Xi,Yji,Yij) from subsystem level and determines

the target values (X0s,X
0
i,Y

0
ji,Y

0
ij) for discipline optimiza-

tion problems. Each discipline optimization problem
finds the values of (Xs,Xi,Yji,Yij) which can satisfy
their own constraints while trying to match the target
values from system level as closely as possible. The opti-
mization strategy and the coordination strategy of CO
are shown in Figures 2 and 3, respectively.

The optimization strategy of CO fits the architecture
of distributed engineering systems (Perez et al., 2004).
Thus, it can be applied in practical easily. However, if
there are a large number of interaction variables in a
MDO problem, the CO method will be low efficient or
even cannot converge (Kim, 2001). It is because that
the high dimensionality of interaction variables makes
it difficult or even impossible to satisfy compatibility
constraints.

IBO

To solve the above problem in CO, IBP, a coordination
method for large-scale systems, is developed in this
study. Similar to CO, IBP decomposes a large-scale sys-
tem into multiple subsystems and has system and sub-
system levels (Amgai and Abdelwahed, 2014; Findeisen
et al., 1980; Mehrotra and Abdelwahed, 2014; Sadati
and Marvast, 2006). At subsystem level, each subsystem
problem is solved concurrently while the Lagrange mul-
tipliers l are considered as coordination parameters.
The system coordinator manipulates l at system level
to manage the overall coordination process. The coor-
dination strategy of IBP is shown in Figure 4.

We combine the coordination strategy of IBP and
the distributed optimization strategy of CO and pro-
pose the IBO method to solve MDO problems. In IBO,
we treat sharing design variable Xs as linking variables
which are denoted as Xs, ij and Xs, ji, respectively. The
coupled relationship between Xs, ij and Xs, ji can be con-
sidered as Xs, ij =Xs, ji. Moreover, we use I to denote
the interaction variables in a MDO problem,
Iij = fXs, ij,Yijg.

System optimization
 problem in Eq. (2)

s 1

1 1

,
,j j

′ ′
′ ′
X X
Y Y

s 1

1 1

,
,j j

X X
Y Y

The 1th discipline optimization
          problem in Eq. (3)

The 1st discipline analysis
s 1 1, , jX X Y 1 jY

The th discipline optimization
          problem in Eq. (3)

i

s , ,i jiX X Y ijY

The th discipline optimization
          problem in Eq. (3)

n

s , ,n jnX X Y njY

s ,
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i

ji ij

′ ′
′ ′
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s ,
,

i

ji ij

X X
Y Y

s ,
,

n
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′ ′
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s ,
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Figure 2. Optimization strategy of CO.
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Figure 3. Coordination strategy of CO (Kroo, 2004).
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Figure 4. Coordination strategy of IBP.
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Then, based on the linear relationship f =
Pn

i= 1 fi,
the MDO problem in equation (1) can be decomposed
into multiple coupled discipline optimization problems
as in equation (4)

min
Xi, Iji

fi = fi Xi, Iji, Iij Xi, Iji

� �� �

s:t: gi Xi, Iji, Iij Xi, Iji

� �� �
. 0

hi Xi, Iji, Iij Xi, Iji

� �� �
= 0

XL
i � Xi � XU

i , I
L
ji � Iji � IU

ji

IL
ij � Iij Xi, Iji

� �
� IU

ij , i, j= 1, 2, . . . , n i 6¼ jð Þ
ð4Þ

In equation (4), the value of Iij can be obtained by the
ith discipline analysis Iij = Iij(Xi, Iji). To control the dis-
cipline optimization process at subsystem level, we
introduce l to discipline optimization problems.
Moreover, the discipline Lagrange function Li which is
corresponding to the original discipline objective fi( � )
is constructed as

Li Xi, Iji, Iij Xi, Iji

� �� �
= fi Xi, Iji, Iij Xi, Iji

� �� �

+lT
i 3 Iji �

Xn

j= 1, j6¼i

lT
j 3 Iij Xi, Iji

� �
ð5Þ

Then, the discipline optimization problems in equation
(4) are changed to

min
Xi, Iji

Li = Li Xi, Iji, Iij Xi, Iji

� �� �

s:t: gi Xi, Iji, Iij Xi, Iji

� �� �
. 0

hi Xi, Iji, Iij Xi, Iji

� �� �
= 0

XL
i � Xi � XU

i , I
L
ji � Iji � IU

ji

IL
ij � Iij Xi, Iji

� �
� IU

ij , i, j= 1, 2, . . . , n i 6¼ jð Þ
ð6Þ

It should be noted that the isolated discipline optimiza-
tion problems in equation (6) can be solved concur-
rently at subsystem level and l are considered as design
parameters. At system level, we construct the system
Lagrange function L as a linear sum of the discipline
Lagrange functions

L Xi, Iji, Iij

� �
=

Xn

i, j= 1
i6¼jð Þ

Li Xi, Iji, Iij

� �
=
Xn

i= 1

fi Xi, Iji, Iij

� ��

+lT
j 3 Iij � Iij Xi, Iji

� �� �
g ð7Þ

In equation (6), each discipline optimization problem is
independent. Thus

Xn

i= 1

min Li = min
Xn

i= 1

Li = minL ð8Þ

Moreover, we denote the Lagrange dual function of the
system Lagrange function in equation (7) as

f lð Þ= L Xi lð Þ, Iji lð Þ, Iij lð Þ
� �

ð9Þ

Then, the equivalence relationship in equation (10) can
be obtained based on the Lagrange duality theorem if
there is a saddle point in the system Lagrange function

min
Xi, Iji, Iij

L Xi, Iji, Iij

� �
= max

l
f lð Þ ð10Þ

Substituting equation (8) into equation (10), we obtainPn
i= 1 min

Xi, Iji

Li(Xi, Iji)= max
l

f(l). We assume that equa-

tion (9) is derivable. Then f0(l) will be equal to zero if

the maximum of f(l) is obtained, f0(l)= Iij(l)�
Iij(Xi(l), Iji(l))= 0. Moreover, the system Lagrange

function will be equal to the system objective function

L Xi, Iji, Iij

� �
=
Xn

i= 1

fi Xi, Iji, Iij

� �
+lT

j 3 Iij � Iij Xi, Iji

� �� �n o

=
Xn

i= 1

fi Xi, Iji, Iij

� �� �
= f Xi, Iji, Iij

� �

ð11Þ

Thus, we can update l according to the solutions in
equation (6) at system level and manage the discipline
optimization problems at subsystem level. The consis-
tency requirements between coupled disciplines will be
satisfied if the optimum of system objective is obtained
in IBO. The distributed optimization strategy of IBO is
illustrated in Figure 5.

The detailed solution procedure of IBO is given as
follows:

Step 1. Set the initial values for design variables X(k�1)
i ,

I
(k�1)
ji , and I

(k�1)
ij ; the initial values for Lagrange multi-

pliers l
(k�1)
i ; and the cycle number k = 1. To keep the

original gradient information in the revised optimiza-
tion problems, l

(k�1)
i can be equal to zero at the begin-

ning of optimization process.
Step 2. Solve the system optimization problem
max

l
f(l) in equation (10) at system level. The design

variables X
(k�1)
i , I

(k�1)
ji , and I

(k�1)
ij are taken as design

parameters during the system optimization process.
After the optimization convergences, the solutions l

(k)
i

are sent to the discipline optimization problems at sub-
system level.
Step 3. Solve the discipline optimization problems in
equation (6) at subsystem level. Using the distributed
optimization strategy of IBO, discipline optimizations
can be performed concurrently. l

(k)
i are used as design

parameters during the discipline optimization process.
After the optimization convergences, the solutions X(k)

and I(k) can be obtained.
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Step 4. Check the convergence. Calculate

G = L(X(k)
i , I(k)ji , I(k)ij )� L(X(k�1)

i , I(k�1)
ji , I(k�1)

ij )
���

���,
i, j= 1, 2, . . . , n and i 6¼ j. If G � e, g . 0, h= 0, and
the value of system objective is stable, go to Step 5;
otherwise, set k = k + 1 and go to Step 2.
Step 5. Stop the overall optimization process. Output
the solutions X(k) and I(k).

The flowchart of IBO is illustrated in Figure 6.

Examples

In this section, the effectiveness of the proposed
method is illustrated by a numerical example and an

aircraft conceptual design problem. We also use other
multilevel MDO methods, CO, CSSO, and BLISS, as
comparisons to solve these MDO problems. All optimi-
zation processes are conducted under the platform of
iSIGHTTM.

A numerical example

A numerical example is provided to show the proposed
method in detail. The formulation of this example is
given in equation (12)

min f = y21 � 2ð Þ2 + x2
1 + x2

2 + y12 � 1ð Þ2 + x2
3

s:t: y12 = x1 � x2 + 2y21, y21 = x3 � y12

�1 � x1 � 1, � 1 � x2 � 1, 0 � x3 � 3

0 � y12 � 1, 0 � y21 � 2

ð12Þ

where f is the system objective; x1, x2, x3, y12, and y21

are the design variables.
We modify the original optimization problem into a

MDO problem including two coupled disciplines. The
discipline optimization problems are given in equations
(13) and (14), and the coupled relationship is shown in
Figure 7.

The first discipline optimization problem is

min
x1, x2, y21

f1 = y21 � 2ð Þ2 + x2
1 + x2

2

s:t: �1 � x1 � 1, � 1 � x2 � 1

0 � y12 � 1, 0 � y21 � 2

ð13Þ

where y12 = x1 � x2 + 2y21.
The second discipline optimization problem is

min
x3, y12

f2 = y12 � 1ð Þ2 + x2
3

s:t: 0 � x3 � 3, 0 � y12 � 1, 0 � y21 � 2
ð14Þ

where y21 = x3 � y12.
Using the distributed optimization strategy of

IBO, there are a system optimization problem and
two modified discipline optimization problems as
follows.

( )
System optimization
 problem maxφ

λ
λ

λ 1 1, jX I

The 1th discipline optimization
          problem in Eq. (6)

The 1st discipline analysis
1 1, jX I 1jI

The th discipline optimization
          problem in Eq. (6)

i

,i jiX I ijI

The th discipline optimization
          problem in Eq. (6)

n

,n jnX I njI

λ ,i jiX I λ ,n jnX I

L LThe th discipline analysisi The th discipline analysisn

Figure 5. Optimization strategy of IBO.

( ) ( ) ( )1 1 1, ,k k k
i ji ij
− − −X I I

( )
Solve the optimization problem

max at system levelφ
λλ

λ

( )
    Solve the discipline optimization
problems in Eq. 6  at subsystem level 

( )kλ

start

1k k= +

( ) ( ),k k
i jiX I

No

Yes

End

( )
The th discipline analysis

i = 1 ~
i

n

1k =

, 0
?

0
G g
h

ε≤ >⎧ ⎫
⎨ ⎬=⎩ ⎭

( ) ( ) ( )( )−
( ) ( ) ( )( )1 1 1

, ,

, ,

k k k
i ji ij

k k k
i ji ij

L
G

L − − −
=

X I I

X I I
( )k
ijI

( )kλ

( ) ( ),k kX I

Figure 6. Flowchart of IBO.
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12y
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1f

The second discipline
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Figure 7. Coupled relationship of two disciplines.

52 Concurrent Engineering: Research and Applications 24(1)

 by guest on February 17, 2016cer.sagepub.comDownloaded from 

http://cer.sagepub.com/


The system optimization problem at system level is

max
l1, l2

L l1, l2ð Þ= y21 � 2ð Þ2 + x2
1 + x2

2 + y12 � 1ð Þ2 + x2
3

+ l1 3 y21 � x3 � y12ð Þð Þ+ l2 3

y12 � x1 � x2 + 2 3 y21ð Þð Þ
ð15Þ

The first modified discipline optimization problem at
subsystem level is

min
x1, x2, y21

L1 x1, x2, y21ð Þ= y21 � 2ð Þ2 + x2
1 + x2

2 + l1

3 y21 � l2 3 x1 � x2 + 2 3 y21ð Þ
s:t: �1 � x1 � 1, � 1 � x2 � 1, 0 � x1 � x2

+ 2 3 y21 � 1, 0 � y21 � 2

ð16Þ

The second modified discipline optimization problem at
subsystem level is

min
x3, y12

L2 x3, y12ð Þ= y12 � 1ð Þ2 + x2
3 + l2 3 y12

�l1 3 x3 � y12ð Þ
s:t: 0 � x3 � 3, 0 � y12 � 1, 0 � x3 � y12 � 2

ð17Þ

We select two initial points to show the effectiveness of
the proposed method. The first point (x1, x2, x3,

y12, y21)= (0, 0, 0, 0, 0) is in the feasible region and the
second point (x1, x2, x3, y12, y21)= (� 1, 1, � 1, 1, � 1)
is in the non-feasible region. The initial Lagrange mul-
tipliers are l=(l1, l2)= (0, 0). The solutions obtained
by different methods are shown in Table 1. We can see
that all methods can obtain reasonable solutions.
Compared with CSSO and BLISS, CO and IBO enjoy
the higher computational efficiency. This is because
that both CSSO and BLISS use the system analysis
to maintain the consistency between two coupled

Table 1. Solutions of the numerical example.

The first point The second point

IBO CO CSSO BLISS IBO CO CSSO BLISS

x1 20.2999 20.3001 20.2999 20.2993 20.3000 20.3000 20.3000 20.2993
x2 0.2995 0.2999 0.2995 0.2990 0.2995 0.2998 0.2995 0.2990
x3 0.8989 0.8998 0.8989 0.9005 0.8988 0.8998 0.8988 0.9005
y12 0.3996 0.3999 0.3995 0.3995 0.3995 0.3999 0.3994 0.4009
y21 0.4995 0.4999 0.4994 0.4989 0.4995 0.4999 0.4994 0.4996
f 3.6005 3.6000 3.6000 3.5977 3.6005 3.6000 3.6000 3.6000
Time (s) 66 91 151 127 74 106 138 130

IBO: interaction balance optimization; CO: collaborative optimization; CSSO: concurrent subspace optimization; BLISS: bi-level integrated system

synthesis.

Table 2. List of variables in the aircraft conceptual design problem.

Description (unit) Description (unit)

x1 Aspect ratio of the wing y1 Total aircraft wetted area (ft2)
x2 Wing area (ft2) y2 Maximum lift to drag ratio

x3 Fuselage length (ft) y3 Stall speed (ft=s)
x4 Fuselage diameter (ft) y4 Aircraft range (miles)
x5 Density of air at cruise altitude (slug=ft3) y5 Gross take-off weight (lbs)

x6 Cruise speed (ft=s) y6 Empty weight (lbs)
x7 Fuel weight (lbs) – –

1 4~x x
Wetted Area

Total Weight

Lift/Drag

Empty Weight

Range

Stall Speed

1y
2y

5y
6y

4y
3y

2y 3y

4y 5 6,y y

Aerodynamic

Weight

Performance 

5y1 7~x x

2 7,  x x

Figure 8. Aircraft conceptual design problem.
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disciplines. The system analysis is effective, however
less efficiency. On the other hand, instead of system
analysis, compatibility constraints and Lagrange multi-
pliers are used in CO and IBO, respectively, which can
enhance the efficiency.

Aircraft conceptual design problem

The second example is an aircraft conceptual design
problem which is developed by the MDO research
group at the University of Notre Dame (Agarwal et al.,
2004). The optimization problem involves aerodynamic
discipline, weight discipline, and performance disci-
pline. The tightly coupled relationships among these
disciplines are shown in Figure 8.

There are five shared design variables x1;x4, x7, six
linking variables y1;y6, and two discipline design vari-
ables x5, x6. The descriptions of the variables are given
in Table 2.

The optimal objective in this example is to determine
the least gross take-off weight within the bounded
design space subject to two performance constraints.
The constraints are the range and stall speed of the air-
craft. The optimization model of this example can be
formulated as follows (Agarwal et al., 2004)

min
x1~x7

f =Weight= y5

s:t: g1 = 1� y3

V stall
req
� 0

g2 = 1� Rangereq
y4
� 0

ð18Þ

where V stall
req = 70 ft=s and Rangereq = 560miles. The

solutions of this example from IBO, CO, CSSO, and
BLISS are shown in Table 3. We can see that the similar
results can be obtained using different MDO methods.
IBO converges using 556 s, while CO, CSSO, and
BLISS require 784, 920, and 874 s, respectively. The
investigation shows that IBO can enjoy higher effi-
ciency. CSSO and BLISS need longer computational
time because of the system analysis. The extra computa-
tional burden is brought into MDO problems by system
analysis, leading to low efficiency. Furthermore, the

high dimensionality of interaction variables increases
the non-linearity of compatibility constraints, which
makes it difficult for CO to converge. Thus, the effi-
ciency of CO is lower than IBO in this example.

Conclusion

In this article, we propose an effective IBO method to
solve MDO problems for large-scale distributed engi-
neering systems. The main difference of IBO from
CSSO and BLISS is that IBO eliminates system analy-
sis. Thus, IBO can enjoy higher efficiency. The main
difference of IBO from CO is that IBO uses Lagrange
multipliers instead of compatibility constraints to main-
tain the consistency between coupled disciplines. Thus,
IBO is more effective than CO to solve a MDO prob-
lem with high-dimensional couplings. Furthermore, the
simple coordination strategy of IBP and the distributed
optimization strategy of CO are integrated effectively
in IBO. Thus, IBO fits the architecture of distributed
engineering systems. Using the distributed optimization
strategy of IBO and taking the advantage of advanced
computational analysis tools, designers can simultane-
ously improve the design and reduce the time and cost
of the design cycle. However, the assumption that the
system objective is a linear sum of all discipline objec-
tives may limit the application of IBO. In practical engi-
neering, the relationship between system objective and
discipline objectives are non-linear generally. To solve
this problem, we will try to use powerful multi-objective
optimization methods to enhance IBO in future works.
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