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Condition-Based Maintenance With Scheduling
Threshold and Maintenance Threshold

Hai-Kun Wang, Hong-Zhong Huang, Member, IEEE, Yan-Feng Li, and Yuan-Jian Yang

Abstract—In order to arrange maintenance resources according
to system condition, the lead time needs to be considered within
the context of condition-based maintenance (CBM). Therefore, a
scheduling threshold is introduced to replace the time to schedule,
which is used as a decision variable in combination with a main-
tenance threshold and a failure threshold. The long-run expected
cost rate for maintenance considers the maintenance cost, the
cost of the waiting time of suppliers and customers. In this way,
suppliers can schedule maintenance services in advance when the
system condition reaches the scheduling threshold, and perform
maintenance when the system condition exceeds the maintenance
threshold. Furthermore, the optimal maintenance plan is up-
dated dynamically in the framework of Prognostics and Health
Management (PHM). Finally, a numerical example is provided
to demonstrate the effectiveness and the dynamic nature of the
proposed method.
Index Terms—Condition-based maintenance (CBM), lead

threshold, lead time, maintenance threshold, scheduling threshold.

NOTATION

Failure threshold.

Maintenance threshold.

Scheduling threshold.

.

Unit time interval.

Time index for time period from to .

Time to failure, where .

Time to maintenance, where
.

Time to schedule, where .

Lead time .

Waiting time of suppliers, suppliers are waiting.

Waiting time of customers, customers are waiting.
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Cost of maintenance in system types , , 2, 3.

Cost of waiting time of suppliers per unit time.

Cost of waiting time of customers per unit time.

Cumulative degradation from time to .

Degradation damage in time .

Probability of system types , .

I. INTRODUCTION

F ROM the suppliers' perspective, the lead time, as the du-
ration of maintenance resources preparation, is required

within the context of condition-based maintenance (CBM). In
order to improve the maintenance resources management, es-
pecially the spare parts management, instead of using the time
to schedule maintenance resources, a scheduling threshold is in-
troduced to provide the optimal maintenance plan with the min-
imum cost based on system conditions to arrange maintenance
resources. For example, to arrange the spare parts for one par-
ticular part of an aircraft, we need to decide when to order the
spare part and when to replace it in the aircraft. Then, there is
a lead time between the time to order and the time to replace.
In order to obtain the optimal plan for the particular part, we
dynamically need a maintenance threshold to replace it and a
scheduling threshold to order it both based on the estimated
condition of that product. Furthermore, if the spare part comes
early, there is the cost of warehousing and human resources;
if the spare part comes late, there is the cost of the expensive
delayed flight or even the cancellation of the flight. When the
maintenance resources are not available when the system fails,
there is the extra cost of waiting time of customers such as the
penalty cost of downtime. When the maintenance resources are
available before performing the maintenance, there is the cost
of waiting time of suppliers such as inventory cost of planned
parts. Meanwhile, maintenance costs are different based on the
condition when all the maintenance resources are available. The
objective is to reduce the overall expected cost rate [1].
In the literature, maintenance policies [2] are classified into

the corrective maintenance, the preventive maintenance, the
CBM [3]–[6], and the predictive maintenance [7]–[10]. There
are different system models for various CBM practices, such as
the nonhomogeneous Poisson process model [11], the two-stage
failure process model [12], the fatigue crack degradation model
[13], the proportional hazards model [14], the belief rule-based
prognostic model [15], and the maintenance models for war-
ranty [16]. A survey of the gamma process in maintenance is
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presented in [17], and the application of the gamma process in
continuously monitored degrading systems is studied in [18].
In particular, for a gamma process degradation in the finite
time horizon, the probability distribution of the cost rate is
provided by the means of the discrete Fourier transformation
of a characteristic function [19]. Because the gamma process
is positive and strictly increasing, it is widely used for positive
and strictly monotone deterioration processes [20].
Nowadays, there are a lot of applications of CBM, such as

commercial-heavy vehicles with grouping maintenance oper-
ations [21], the gas turbine with the health index [22], trac-
tion batteries with the impedance measurement [23], the gas-
insulated switchgear with the accuracy of sensor information
[24], marine engine cylinder liners with a state-dependent wear
model [25], and the wind turbine [26]–[30]. However, in these
applications, the lead time [31] is not considered.
Here, to compensate for the effects of the lead time, a three-

threshold maintenance scheme is presented. The scheme con-
tains three critical condition thresholds.
1) The failure threshold is a deterministic constant [32]. A

system exceeding the failure threshold is failed.
2) The maintenance threshold is a condition threshold for

maintenance execution [33]. If the system's degradation
reaches this threshold, the maintenance is carried out im-
mediately when all resources are ready.

3) The scheduling threshold is the condition threshold for re-
source arrangement. Maintenance resources start to be pre-
pared when the degradation exceeds this threshold.

In time-based maintenance (TBM), the lead time is the dura-
tion between the time to schedule and the time to perform the
maintenance [34], not including the period of the maintenance
actions and decision-makings. In CBM, the lead threshold is de-
fined as the difference between the scheduling threshold and the
maintenance threshold. Then the optimal lead threshold is deter-
mined by two factors: the lead time from service providers and
the system degradation from the field operations. In this way,
we convert the lead time to the lead threshold by the scheduling
threshold and the maintenance threshold.
Using the three-threshold maintenance scheme, instead of

considering system stages, we propose the concept of system
types. It is important to distinguish the system stages [35] and
the proposed system types in two aspects: 1) one degradation
path can have different degradation stages at different time
points, while one degradation path can only belong to one
system type with the information of the whole life time, and
2) we use system stages to describe the system condition at a
single time point, whereas, system types are used to describe the
system for a time line including the system stages at each time
point. Five system types are considered in this article at each
time step. In types 1–3, at each time step, the system condition
reaches the scheduling threshold where the maintenance cost is
calculated. Then in these three types, the system types are also
the maintenance cost types, classified by the future condition
when resources are prepared: 1) in type 1, the system condition
is lower than the maintenance threshold; 2) in type 2, the system
condition is greater than the maintenance threshold, and lower
than the failure threshold; and 3) in type 3, the system condition

is greater than the failure threshold. In types 4–5, the system
types are classified by the past and current system conditions:
1) in type 4, the current system condition is still lower than the
scheduling threshold and 2) in type 5, the past system condition
was higher than the scheduling threshold. Above all, the five
system types contain all possible kinds of degradation paths at
each time step.
According to the system types, there are three types of main-

tenance cost corresponding to the system types 1–3, respec-
tively. Moreover, there are extra cost of waiting time of sup-
pliers and customers. In type 1, there is waiting time of sup-
pliers, from the time when the resources are prepared to the
time when the degradation reaches the maintenance threshold.
In type 3, there is waiting time of customers, from the failure
time to the time when the necessary maintenance resources are
available. Both costs of waiting time of suppliers and customers
are integrated in the overall cost.
The main contributions of this paper are as follows.
• A scheduling threshold as an essential decision variable is
introduced to replace the time to schedule for suppliers.
It combines with a maintenance threshold and a failure
threshold.

• System types, classified by these thresholds, are proposed
based on the past and present information, and the predic-
tion for the future.

• The expected waiting time of suppliers and customers are
integrated into the cost analysis for the classified mainte-
nance types.

• The long-run cost rate is minimized optimally, compared
with other maintenance plans.

• The optimal process is updated online in the framework of
Prognostics and Health Management (PHM).

The paper is organized as follows. In Section II, the assump-
tions for the studied system are listed, and the probability model
of system types at each time step is established. In Section III,
both the expected waiting time of suppliers and customers are
provided. In Section IV, the overall cost in the proposed method
is analyzed considering the cost of waiting time. In Section V,
the optimal maintenance plan in the framework of the PHM is
proposed. In Section VI, a numerical example is presented to
demonstrate the proposed approach. In Section VII, conclusions
are given.

II. SYSTEM ASSUMPTIONS AND MODEL DESCRIPTION

A. System Assumptions
Three basic assumptions for the system are listed here.
• The system deteriorates with a monotone increasing degra-
dation process. The damages at each time step are cumu-
lative.

• The system fails when the degradation reaches the prede-
termined failure threshold.

• It is assumed that the system experiences a gamma degra-
dation process. It follows three basic rules of gamma
process [36]: 1) ; 2) the increments are
s-independent; and 3) the increments follow a gamma
distribution.
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B. Degradation Process

The failure time , which is the first passage time when
the degradation exceeds the failure threshold , is defined by

, where is the system condition
at time . The cumulative density function (CDF) of failure time
is , given as

(1)

The CDF of degradation is , expressed as

(2)

When all of the system experiences monotone increasing degra-
dation paths, it is obvious that as illus-
trated in Fig. 1.
The gamma process is used to model the damage accumula-

tion process as one of the Levy processes. The increments of
the degradation process at mutually exclusive discrete time in-
tervals are positive, s-independent with each other, and follow
the gamma distribution. The mathematical expression of the
stationary gamma process is presented as follows, including a
shape parameter and a parameter . The probability density
function (PDF) and CDF of the gamma distribution are respec-
tively given as [20]

(3)

(4)

where the complete gamma function is
, and the lower incomplete gamma function

is . Then, the PDF of the
increments is .

C. System Types

The systems are divided into five types by three thresholds.
The time to schedule , which is the first passage time when
the degradation exceeds the scheduling threshold , is defined
by . Similarly, the time to mainte-
nance is defined by , where
is the maintenance threshold. We set , and lead time

Fig. 1. CDF of the time and the degradation.

, where is a unit time period. The system type
is determined by the condition of degradation path, which in-
cludes not only the present condition , but also the past
condition at time and the future condition at time

. The system condition in the past time
and the present time are compared with the scheduling
threshold , in order to determine when the preparation should
be started. The system condition in the future time is
compared with the maintenance threshold and the failure
threshold to identify maintenance cost types. The system
types are shown in Table I and in Fig. 2.
When the system experiences time periods, each period re-

sults in a damage . Accumulated damage from time index
to time index is . In the following integral functions, the
stands for , the stands for , the stands for .

When and , is the scheduling time
index.
In type 1, is the scheduling time index, and at time

the degradation is still lower than the maintenance threshold,
which means the system still does not need the maintenance.
The probability of type 1 is given by (5), shown at the bottom of
the page. When the degradation conforms to a gamma process,
the probability of type 1 is given by (6), shown at the bottom of
the following page.

(5)
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TABLE I
SYSTEM TYPES

Fig. 2. System types.

In type 2, is the scheduling time index, and at time
the degradation is higher than the maintenance threshold

and lower than the failure threshold, which means it needs the
maintenance immediately. The probability of the system in type
2 is given by (7), shown at the bottom of the page. When the
degradation conforms to a gamma process, the probability of
type 2 is given by (8), shown at the bottom of the page.
In type 3, is the scheduling time index, and at time
the degradation is greater than the failure threshold, which

means that the failure happens before maintenance resources are
ready. The probability of type 3 is given by (9), shown at the
bottom of the following page. When the degradation conforms
to a gamma process, the probability of type 3 is given by (10),
shown at the bottom of the following page.
Using (5), (7), and (9), it is obvious that

(11)

(6)

(7)

(8)
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Using (6), (8), and (11), the probability of type 3 is given by
(12), shown at the bottom of the page.
In type 4, is before the scheduling time. The probability

of type 4 is

(13)

When the degradation conforms to a gamma process, the prob-
ability of type 4 is

(14)

In type 5, is after the scheduling time. The probability of
type 5 is

(15)

When the degradation conforms to a gamma process, the prob-
ability of type 5 is

(16)

It is obtained that
from (11), (14), and (16). It indicates that these five system

types at time contain all of the situations at that time. Also,
system types 1–3 contain all of the maintenance cost types and
it is obvious that . It im-
plies that all degradation paths are calculated once in the system
types 1–3.

Fig. 3. Waiting time of suppliers.

III. WAITING TIME

In time index , when it contains the schedule time , there
is waiting time of suppliers in type 1, there is no waiting time in
type 2, there is waiting time of customers in type 3. In types 4
and 5, time index does not contain the schedule time , and
the waiting time is calculated in other time step.

A. Waiting Time of Suppliers
In type 1, though the resources are ready, the customer

operates the devices until the system condition reaches the
maintenance threshold and then performs the maintenance
immediately, as shown in Fig. 3. In type 2 and 3, there is no
waiting time of suppliers, so and

.

(9)

(10)

(12)
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Fig. 4. Waiting time of customers.

When the schedule time is , the expected waiting time of
suppliers is given by (17), shown at the bottom of the page.

B. Waiting Time of Customers

In type 3, the system fails before maintenance resources are
ready, as shown in Fig. 4. It is a serious problem especially when
the shutdown cost is expensive for customers, and the cost is
dependent on the waiting time. In types 1 and 2, there is no
waiting time of customers, so and

.
When the schedule time is , the expected waiting time of

customers is given by (18), shown at the bottom of the page.

IV. MAINTENANCE POLICY

A. Maintenance Assumptions
The assumptions are listed as follows to model the optimiza-

tion problem of maintenance policy.
• About the time. The unit time interval is . Maintenance
is immediately performed and the duration time is negli-
gible. The time horizon is infinite. The lead time is a deci-
sion parameter and determined.

• About measurement. The degradation is estimated with
measurement noise, and, in optimization, we regard the es-
timated degradation condition reflects the system condition
perfectly in prognostics. Therefore, the false alarm rate and
detection rate are not calculated in the optimization process
of both thresholds.

• About maintenance. Implementing maintenance is tech-
nically feasible for changing the system condition to “as
good as new”. When maintenance resources are ready, the
system will be repaired immediately once the degradation
cross the maintenance threshold. In this way, if the system
fails when maintenance resources are ready, there will not
be downtime.

• About cost. The maintenance cost of type 1, type 2, and
type 3 are one-time expense in each life cycle. The waiting
time cost and operation cost are fixed per unit time. Details
of cost analysis are given in Section IV-B.

B. Cost Analysis
To minimize the long-run expected cost rate for maintenance

is the objective. The long-run expected cost rate is defined as

(19)

(17)

(18)
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The total cost contains two parts: the maintenance cost and
the waiting time cost.
The maintenance cost is divided into three kinds by types of

degradation paths. In type 1, maintenance is carried out when
the system condition just reaches the maintenance threshold.
In type 2, though the resources are ready, the system degrada-
tion is higher than the maintenance threshold and lower than
the failure threshold. In type 3, the maintenance is implemented
after system fails. Hence, we assume , where
is the maintenance cost for type , , 2, 3.
The cost of waiting time of supplier and customer per time

unit are and respectively. The expected waiting time
at time is given in Section III.
The expected cost rate is made of two parts:

the maintenance cost rate, and the waiting time cost rate. The
maintenance and the waiting time cost rate equal the corre-
sponding expected cost divide by the expected time. In the first
part, expected maintenance cost, is made up of the product of
maintenance cost and probability for each type at each time
unit and these types contain
all possibilities . In the
second part, the expected waiting time cost for suppliers and
customers is . During
the waiting time of suppliers, the system is still working, and the

is included into the useful time. During the waiting time of
customers, the system is not working, and the is excluded.
Then finally the expected useful time for each time unit, classi-
fied in the same way for the system type, is

Therefore, the expected cost rate of a renewal cycle is written
as (20), shown at the bottom of the page.
The lead time is a decision variable, decided by sup-

pliers, whereas the lead threshold is determined by the op-
timized results of the scheduling threshold and the maintenance
threshold.

V. OPTIMAL MAINTENANCE PLAN IN PHM
In order to apply the approach to more general engineering

problems, the optimal scheduling threshold and themaintenance
threshold have to be updated dynamically to obtain the min-
imum cost rate based on the continuous online system condition
estimation in the framework of PHM.

A. Inspection Process
Although the degradation could be measured, however, the

imperfect inspection is one of the difficulties in system degra-
dation condition estimation under the online monitoring. The

random inspection error is assumed with normal distribution.
Still the degradation process is assumed to be gamma process to
be consistent with the above assumptions. While the stochastic
process for the degradation process and the random distribu-
tion for the inspection process may vary from one to another,
the proposed three thresholds based optimal maintenance plan
relies on the online accurate estimation and relative plenty his-
tory data for the optimization.
Then, the inspection process contains two parts, the

gamma process and the Gaussian noise .

B. Particle Filtering for the Estimation

The main steps for particle filtering are simply listed for ref-
erence.
The first step is to establish the model for the particle filtering.

Then in this case it includes two parts: 1) the degradation con-
dition transition and 2) the continuous
inspection process .
The second step is the prediction and the updating. The pre-

diction provides the prior probability distribution based on the
history information with the degradation transition. Then in the
updating step, the new observations are obtained and used to
update the prior probability distribution, so as to estimate the
system degradation condition.
The third step is the resampling process, with the aim to deal

with the lack of the variability for particles, which is only re-
quested when the variability is lower than the acceptable level.
Here, the systematic resampling is applied for its easy imple-
mentation and sufficiently good performance.
Details about the method of particle filter are in [37]–[40].

C. Optimal Scheduling and the Maintenance Threshold

The whole process for optimization of the scheduling and the
maintenance threshold in the framework of PHM is listed as
follows.
Step 1) Collect the history information.
Step 2) Establish the degradation model and the inspection

model
Step 3) Collect on-line data.
Step 4) Perform particle filter including: the prediction step,

the updating step, and the resampling step.
Step 5) Reset the boundary of the scheduling and the main-

tenance threshold.
Step 6) Optimize the objective of the cost rate including the

time before the last estimated time, and update the
optimal scheduling and the maintenance threshold
based on system condition.

(20)
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Fig. 5. Diagram of the proposed method in PHM.

Step 7) Compare the system condition with the optimal
thresholds, and make decisions.

In this way, an online optimal maintenance scheme is estab-
lished. A numerical example for optimization in PHM is illus-
trated to show the process of the optimization process for the
three thresholds based maintenance plan. We use the data in
Table I and show the results in Fig. 5. The example shows the
observations and estimated system condition at each time point.
In order to provide the optimal plan with the updated data, the
scheduling threshold and maintenance threshold are both opti-
mized based on the estimated degradation in each estimation
step. Then we can make decisions based on these thresholds. In
this way, the thresholds are dynamically updated with the online
monitoring data under the framework of PHM.
The proposed optimization process has been coded in

MATLAB software. The optimization tool is used with the
constrained nonlinear minimization solver FMINCON by the
SQP algorithm. Although our problem is linearly constrained,
we take advantage of the SQP algorithm, which shows the
strict feasibility to bounds and robustness to nondouble results.
The proposed algorithm for the optimization process is listed
as follows.
Step 1) Initialize all the parameters. Initialize the variable of

scheduling threshold and the maintenance threshold
in the feasible region.

Step 2) Create the objective function of the long-run ex-
pected cost rate by substituting (6), (8), (12), (17),
and (18) into (20).

Step 3) Create the constraint functions
.

Step 4) Update the Hessian Matrix.
Step 5) Solve the quadratic programming.
Step 6) Use line search on the merit function.
Step 7) If the tolerance of the objective function is larger than

the specified value, go back to step 4).
Step 8) Output the scheduling threshold, the maintenance

threshold, and the long-run expected cost rate.

TABLE II
DECISION PARAMETERS IN THE NUMERICAL EXAMPLE

Fig. 6. Optimal , , and the sum of , , and .

Fig. 7. Optimal , , and .

VI. NUMERICAL STUDY

A. Numerical Example

Here, we use a numerical example to demonstrate the op-
timal condition-based maintenance policy with a scheduling
threshold and a maintenance threshold. The example follows
all of the mentioned system assumptions and maintenance
assumptions.
Initialize the parameters as listed in Table II. The tolerance of

the objective in this example is , whereas the tolerances
of the variables are not restricted.
System types are plotted with the optimized variables of

and at each time step in Figs. 6–9.
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Fig. 8. Expected waiting time of suppliers and customers.

Fig. 9. Expected waiting time of suppliers depending on .

In Fig. 6, the probability of system type 4 decreases with time,
and the probability of system type 5 increases with time. It indi-
cates the probability that the system condition is lower than the
scheduling threshold is decreasing with time. Meanwhile, the
time to schedule is increasing at first, and it is decreasing after a
peak. It shows the distribution of scheduling time. In this case,
the time to schedule is distributed and is decided by the degra-
dation and the scheduling threshold.
In Fig. 7, when the degradation reaches the scheduling

threshold, the probabilities of the three maintenance cost types
are presented. In this case, the probability of type 1 is larger
than type 2 and type 3, while the probabilities of types 2 and
3 are similar. The optimization results imply that we prefer
the ability to perform maintenance immediately when the
degradation reaches the maintenance threshold.
In Fig. 8, the expected waiting time of suppliers and cus-

tomers are plotted. At each schedule time, the expected waiting
time of suppliers is much higher than the expected waiting time

Fig. 10. Expected waiting time of customers depending on .

Fig. 11. Sensitivity analysis of optimal decision variables on , , and
.

TABLE III
RESULTS OF THE NUMERICAL EXAMPLE OF THE PROPOSED METHOD

of customers. Reasons lie in two points. First, the cost of waiting
time of customers is much more than that of suppliers, so the
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TABLE IV
RESULTS OF THE NUMERICAL EXAMPLE FOR COMPARISON

corresponding costly time is reduced by optimization. Second,
the failure are costly when maintenance resources are not ready.
From the results in Figs. 6–8, the optimal plan prefers to re-

duce the waiting time of customers, as well as to make the main-
tenance resources available before the time when the system
condition reaches the maintenance threshold. It is generally con-
sistent with the engineering practice.
Sensitivity analysis for the expected waiting time on the cost

of the waiting time of customers and suppliers with the opti-
mization results are plotted in Figs. 9 and 10, respectively. The
peak of decreases as the cost increases. In the
same way, the peak of decreases as the cost in-
creases. It shows that the cost of the waiting time makes a sig-
nificant impact on the optimal expected waiting time.
Sensitivity analysis of optimal decision variables on

and is plotted in Fig. 11. The has a great
effect on and a slight effect on , whereas, the
has a great effect on and a slight effect on . It implies
the growth of cost of the waiting time of suppliers leads to
reduction in optimal maintenance threshold and lead threshold.
In the same way, the increased cost of the waiting time of
customers results in low scheduling threshold and the long lead
threshold. At the same time, the lead threshold increase
as the lead time increase, with the decreasing and the
fluctuation of .
From Figs. 9–11 and Table III, we can find out that: with the

increasing of the cost of the waiting time of customers, the op-
timal scheduling threshold is declined and the expected waiting
time of customers is also decreased; with the increasing of the
cost of the waiting time of suppliers, the optimal maintenance
threshold is declined and the expected waiting time of suppliers
is also decreased; with the increasing of the lead time, the dis-
tance between the optimal scheduling threshold and the optimal
maintenance threshold is increasing.

B. Compared With Other Maintenance Plan

Four cases are similar to our plan and are presented here to
be compared with our method. They are given here.
Case 1) Tthe maintenance threshold equals the failure

threshold.
Case 2) Tthe maintenance threshold equals the scheduling

threshold.
Case 3) The scheduling threshold is a variable, and the main-

tenance threshold is based on the variable and the
expected increasing value of the degradation during
the lead time.

Case 4) The maintenance threshold is a variable, and the
scheduling threshold is based on the variable and the

expected increasing value of the degradation during
the lead time.

Then we calculate the expected increasing value of the degra-
dation during the lead time , based on the definition of the
expectation of the gamma process. In case 3, we calculate the
maintenance threshold as a function of the scheduling threshold
by the equation ; in case 4, we calculate the
scheduling threshold as a function of maintenance threshold by
the equation .
The optimization results for these four kinds of cases are

listed in Table IV. As shown, the cost rate among the results
shows that the proposed method of three thresholds based main-
tenance plan take advantage of two variable thresholds to ob-
tain the optimal cost rate. The comparison indicates the role of
our three thresholds maintenance plan in optimal decisions with
lead time.

VII. CONCLUSION
In this study, a framework of condition-based maintenance

with a scheduling threshold and a maintenance threshold is de-
veloped. Unlike existing models, system types are classified by
the information from the past, the present and the potential fu-
ture, compared with the scheduling threshold, the maintenance
threshold and the failure threshold. The gamma process is used
to demonstrate the three-threshold scheme. Moreover, within
the scheme of the proposed system types, the expected waiting
time of suppliers and for customers are presented. And the op-
timal maintenance plan with the objective of minimizing the
long-run cost rate is given. Furthermore, the optimal mainte-
nance plan is updated dynamically in the framework of PHM.
Finally, a numerical example with sensitivity analysis shows
that: 1) if the cost of waiting time of suppliers per unit time
is increased, the optimum maintenance threshold is reduced;
2) if the cost of waiting time of suppliers per unit time is in-
creased, the optimum scheduling threshold is reduced; and 3)
if the lead time is increased, the optimum scheduling threshold
is reduced and the lead threshold is extended. These trends are
useful to optimize condition-based maintenance with the re-
quired lead time. Therefore, the proposed scheme improves the
maintenance plan from preparation to execution with the online
system monitoring.
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