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A Joint Redundancy and Imperfect Maintenance
Strategy Optimization for Multi-State Systems
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Abstract—The redundancy allocation problem has been exten-
sively studied with the aim of determining optimal redundancy
levels of components at various stages to achieve the required
system reliability or availability. In most existing studies, failed
elements are assumed to be as good as new after repair, from a
failure perspective. Due to deterioration, the repaired element
cannot always be restored to a virtually new condition unless
replaced with a new element. In this paper, we present an ap-
proach of joint redundancy and imperfect maintenance strategy
optimization for multi-state systems. Along with determining
the optimal redundancy levels, the element replacement strategy
under imperfect repair is also optimized simultaneously, so as to
reach the desired availability with minimal average expenditure. A
generalized imperfect repair model is proposed to characterize the
stochastic behavior of multi-state elements (MSEs) after repair,
and a replacement policy under which a MSE is replaced once
it reaches the pre-determined number of failures is introduced.
The cost-repair efficiency relation, which regards the imperfect
repair efficiency as a function of assigned repair cost, is put forth
to provide a flexibility of assigning repair efforts strategically
among MSEs. The benefits of the proposed method compared to
the existing ones are demonstrated and verified via an illustrative
case study of a three-stage coal transportation system.

Index Terms—Imperfect maintenance, maintenance resources
allocation, multi-state system, redundancy allocation problem.

ACRONYMS

MSS multi-state system

MSE multi-state element

MTTF mean time to failure

UGF universal generating function

RAP redundancy allocation problem

i.i.d. -independent and identically distributed

NOTATIONS

Number of elements in a MSS

Number of subsystems in a MSS
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Number of available element versions in
subsystem

Number of possible states of element

Performance rate of element in state

Probability of element in state at time in the
1st repair cycle

Probability of element in state at time in the
1st repair cycle with initial state

Intensity of element transiting from state to
state in the 1st repair cycle

Number of possible system states

Performance rate of a MSS in its state

Probability of a MSS in state at time in the 1st
repair cycle

Probability of component in state at time in
the repair cycle

Probability of component in state at time in
the repair cycle with initial state

The possible user demand level

Probability of user demand level being equal to

Unity function: , and

System availability under random user demand
level

Average system expenditure

Average expenditure of element

Replacement cost for element

Assigned repair cost for each repair action
performed on element

Maximum repair cost that can be assigned for
element

The best efficiency of imperfect repair that can
be achieved when the assigned repair cost is
for element

Quasi-renewal parameter for the lifetime random
variable of element

Quasi-renewal parameter for the repair time
random variable of element
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Transition probability matrix representing the
probability of state which repaired element is
restored to in the repair cycle

Probability of repaired element being restored
from current state to state in the repair
cycle

Transition probability vector representing the
probability of repaired element being restored
from state 1 to higher performance states in the

repair cycle

Characteristic constant related to imperfect repair
efficiency of element

Characteristic constant related to the transition
probability of element

Random time of element sojourning in state
during the repair cycle with initial state

Random lifetime of element in the repair
cycle

Random time of element sojourning in state
during the repair cycle

Random repair time of element in the repair
cycle

Time duration of the replacement cycle for
element

Mean time to failure of element in the repair
cycle

Mean time to failure of element in the repair
cycle with initial state

Expected mean time of repairing element in the
repair cycle

Expected mean time of element sojourning in
state during the repair cycle

Expected mean time of element sojourning in
state during the repair cycle with initial
state

Expected mean time of replacing element

Average probability of element sojourning in
state

Average probability of entire system sojourning
in state

Expectation operator

I. INTRODUCTION

R EDUNDANCY strategy, as a way to improve the system
reliability through incorporating redundant components

or subsystems, has been extensively adopted in industry. The
redundancy allocation problem (RAP) focuses on choosing a set
of components available in the market, and determines optimal
redundancy levels of components at various stages to achieve

the required system reliability or availability within the physical
constraints, e.g. weight, volume etc., or with minimal cost. It is a
paramount research topic, and has received increasing attention
in these years [1].
The traditional RAP deals with the binary state system

model, where components and systems only have two possible
states: working perfectly, or completely failed. As seeking the
optimal solution in an enumerative way is computationally
burdensome, both heuristic algorithms (e.g. branch-and-bound
method [2], [3], scaling method [4] etc.) and meta-heuristic
algorithms (e.g. such as genetic algorithm [5], ant colony
algorithm [6], tabu search [7], annealing simulated algorithm
[8], etc.) have been intensively studied to increase the global
optimization capacity for RAPs. However, many practical
engineering systems, such as nuclear systems, manufacturing
systems, computing systems etc., can perform their intended
functions at more than two performance rate levels, from a
perfect functioning state with a nominal performance rate, to
complete failure. These kinds of systems are called multi-state
systems (MSSs), and their RAPs have received considerable
attention in recent years [9]. The redundancy optimization
for multi-state series-parallel systems is first reported in [10].
Heuristic approaches are introduced to solve the resulting RAP
in a computationally efficient manner [11], [12]. The relia-
bility-redundancy allocation scheme, in which the target MSS
reliability can be achieved via either providing redundancy
levels or improving component state distributions, is proposed
in [13]. Nevertheless, the aforementioned RAPs only treat the
system construction cost (component cost) as the objective or
constraint. As mentioned in [14], component cost, by itself, is
an inadequate measure of a system’s operational effectiveness.
Even a system with high reliability might result in a higher
total cost of ownership (TCO) which includes component cost,
operation cost, as well as maintenance and support cost. To
maximize system efficiency from the lifecycle view point, de-
cision-makers should, therefore, take into account the lifecycle
cost rather than only the construction cost in the system design
phase. Few works have investigated the RAP in conjunction
with maintenance strategy. Levitin and Lisnianski [15] formu-
late a joint redundancy and replacement schedule optimization
problem for MSSs, where the element versions, redundancy
levels, as well as the replacement intervals are optimized
simultaneously. Nourelfath et al. [16], [17] discuss the RAP for
MSSs considering limited maintenance repairmen. A joint re-
liability-redundancy optimization is studied by Tian et al. [18]
considering technical and organizational actions which might
affect degradations and repair rates of MSEs. However, the
aforementioned research is based on the perfect and minimal
maintenance assumptions that repaired elements are in either
as good as new condition or as bad as old condition, from a
reliability point of view. The unrealistic hypothesis has been
frequently argued in literature, and many imperfect mainte-
nance models which treat repaired element and systems as in a
physical condition somewhere between the two extremes have
been proposed in the past decade [19]. The most relevant efforts
among them are: model (Nakagawa [20]),
model (Block et al. [21]), model
(Makis and Jardine [22]), Kijima Type I and II models (Kijima
[23], [24]), improvement factor method (Malik [25]), hybrid
imperfect model (Lin [26]), geometric process (Lam [27]), and
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quasi-renewal model (Wang and Pham [28], [29]). The com-
monality and interrelationship among them are investigated in
[30]. Nevertheless, most of the imperfect maintenance models
deal with binary state elements and systems. To the best of
our knowledge, quantifying imperfect maintenance efficiency
for elements and systems possessing multiple states is still in
infancy, and only a few attempts have been made to date. For
example, Levitin et al. [31], and Nahas et al. [32] employ the
age reduction model to quantify the improvement of element
condition resulting from the preventive maintenance (PM).
By using the Kijima type II imperfect maintenance model,
Liu and Huang [33] develop a selective maintenance strategy
for MSSs with binary state elements. Because these imperfect
maintenance models can only be applied to the elements with
binary capacity, it becomes infeasible once MSE cannot be
categorized or simplified to a binary state element. Soro et
al. [34] introduce a series of performance measures for the
MSS under minimal and imperfect maintenance action; and
one kind of imperfect PM action recovering the MSS from the
last acceptable state to a higher but degraded state is modeled
via a Markov process. Tan and Raghavan [35] study a system
oriented maintenance framework, and introduce a random
restoration factor quantifying the imperfect restoration. Some
possible errors and misunderstanding associated with their
work have been discussed in [36]. To quantify the efficiency
of imperfect preventive maintenance for MSEs, Nourelfath et
al. [37] put forth a Markov model for preventively maintained
MSEs. The MSE which has degraded to its unacceptable state
will restore to a better state after a preventive maintenance.
Both the redundancy allocation and PM planning are optimized
in a concurrent manner to maximize system availability under a
budget constraint. An alternative imperfect maintenance model
based on the quasi-renewal process of binary state systems has
been developed in our recent paper [38]. The key idea behind
it is that, even though the repaired element is restored to its
best state after repair, it cannot be considered to be in a com-
pletely new condition, and the degradation trend accelerates
in the next repair cycle. This important phenomena has been
extensively observed in many engineered systems [38], but
cannot be characterized by existing imperfect maintenance
models of MSSs [31], [34], [35], [37]. As an extension of our
previous work, a RAP incorporated with element replacement
strategy optimization under imperfect repair is formulated
in this paper. By releasing the assumption that the repaired
element is always recovered to its best state as in our earlier
work, a more generalized imperfect repair model for repairable
MSEs is also introduced. The repair activity for individual
elements will be executed once the element falls into its failure
state. With the increase of repair times, the working durations
of repaired elements will decrease while the durations for
repairing will increase. It is more economically efficient to
replace the deteriorated element with a brand new one after
the pre-determined number of failures than to continue
repairing. This element replacement policy is called policy
throughout the present paper. Furthermore, it is reasonable to
relate the repair efficiency with the assigned repair cost. The
more repair resources spent, the better condition the repaired
element will restore to. Another contribution of this work
compared with the existing literature [31], [32], [37] lies in
the introduction of two hypothetical functional relations which

Fig. 1. The state-space diagram of the MSE .

enable us to treat the imperfect repair efficiency as a function of
the assigned repair expenditure. This idea is highly desired in
practical maintenance management because it provides much
more flexibility to the maintenance decision makers. With
such flexibility, they can determine not only when to replace a
deteriorated element, but also how much repair resources are
to be assigned for each repair action, to achieve the required
system availability with a minimum expected expenditure per
unit time for the entire MSS.
The remainder of this paper is organized as follows. Section II

introduces the Markov model of the concerned MSSs in this
paper. The proposed generalized imperfect repair model for
MSEs is presented in Section III. The hypothetical func-
tions linking the repair efficiency and cost are formulated in
Section IV. The formulation of the joint RAP is formulated in
Section V. The genetic algorithm (GA) and its implementation
on our specific problem are briefly reviewed in Section VI. An
illustrative case is presented in Section VII, and it is followed
by remarks and closure in Section VIII.

II. MARKOV MODEL FOR MSE WITHOUT REPAIR

The MSS studied in this work is defined as a system having a
finite number of states with distinct performance rates [9].Many
engineered systems such as power generating systems, or water
pipe systems, can be viewed as MSSs [39], [40], [41]. The per-
formance rate of the entireMSS at any time instant is a discrete
random quantity, and can be completely determined by the per-
formance rates of its components and the system configuration.
Directly constructing a stochastic model for the entire MSS

with a great amount of components is intractable due to state ex-
plosion. Lisnianski [42] introduces a novel method to integrate
the stochastic process model of individual MSE via UGF. In this
way, the number of states in the associated stochastic model can
be drastically reduced. Following the aforementioned modeling
strategy, the stochastic behavior of individual MSE without any
repair is modeled by the homogenous Markov process with the
assumption that the transition time between any pair of states
is exponentially distributed. An example of the state-space di-
agram of the element without considering repair activity is
shown in Fig. 1. The corresponding Kolmogorov differential
equations for element can be written as [43]

(1)

If the element starts working from state , the initial
conditions should be given as , for

, and the state distribution with respect to time can be
obtained via solving this set of differential equations.
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III. A GENERALIZED IMPERFECT REPAIR MODEL

Most maintenance models using a renewal process are based
on the assumption that maintenance actions are always perfect,
and repaired systems are restored to as good as new condition.
To model the imperfect maintenance of binary state systems,
Wang and Pham [28] introduced the quasi-renewal process to
characterize the deteriorating trend of the repaired system. How-
ever, the quasi-renewal process has only been successfully ap-
plied to model the imperfect repair of binary state systems, and
its application to MSS, especially the one concerned in this
paper, has heretofore not been completed.
In our recent paper [38], we assume that a MSE, either failed

or working, can be recovered to its best state after repair ac-
tion, but not as good as a brand new one. The state transition
intensities increase proportionally after repair. Hence, the pace
of the degradation from the best state to a lower state becomes
faster in the next repair cycle. This assumption is more real-
istic and reasonable because, unless replaced, the repair element
cannot restore to its initial state due to aging and deterioration,
and the degradation process will accelerate with usage.With this
kind of consideration, the quasi-renewal process is extended to
characterize the deterioration trend of MSEs with respect to the
number of repairs as follows.
A set of sequential nonnegative random variables

is used to represent the time
duration of MSE sojourns in state . Suppose ,

,
hold, and random quantities , are i.i.d. The
sequence of random variables
is said to be monotonically decreasing random variables. Fur-
thermore, the counting process representing the
cumulative times that MSE falls into the worst state 1 from the
best state forms a decreasing quasi-renewal process once the
state transition intensities increase proportionally. Thus, if the
state probability of a brand new MSE in the first repair cycle is
denoted as , , one can derive the state
probability of the MSE in the repair cycle as .
Obviously, these relations reflect the proportionally increasing
trend of the state transition intensity with respect to the number
of repairs. Therefore, the expected time of element sojourning
in state during the repair cycle is given by

(2)

where is the expected time of element staying at state
in the first repair cycle. If the element state 1 is regarded as a
failure state, then the mean time to failure (MTTF) in the
repair cycle is given by

(3)

where is the MTTF of element in the first repair cycle.
However, in our preliminary work [38], the basic assumption

that any element after repair can recover to its best state is some-
what restrictive. A more generalized imperfect repair model is
to account for the case where repaired elements are not neces-
sarily always being restored to their best state but might also
be recovered to any intermediate states with a higher perfor-
mance rate. The new imperfect repair model is applicable to
many practical cases. For instance, the undetected fault may
still exist after insufficient inspection and repair. Thereby, the
repaired element can only be recovered to its intermediate states
with degraded performance [44], [45]. Another example is the
situation where some of the aging and deteriorations of elements
are non-repairable (e.g. power systems [45] etc.); repaired ele-
ments have a degraded performance rate after repair [34]. The
probability that a repaired element returns to one of the higher
performance states is quantified via a transition probability ma-
trix with respect to the number of repair cycles , which is de-
fined as (4) shown at the bottom of the page. where
( , and for ) is the prob-
ability that repaired element is restored from current state to
the higher performance state in the repair cycle, and it sat-
isfies the condition . This condition holds
because, after repair, the repaired element can always be in one
and only one higher performance state from to , and it
composes the complete group of mutually exclusive events. In
general, the transition probability can be estimated and inferred
viamaintenance and operation records, as well as the knowledge
from experts. It is also worth mentioning that, with the number
of repair cycles increasing, the transition probability from the
repaired state to the higher state decreases while the probability
to the lower state increases. In other words, it becomes harder
to restore an element to its better states as the number of repairs
increases. Though this behavior is important, and can be widely
observed in engineering practice, it cannot be characterized by
many imperfect maintenance models reported in literature [31],
[32], [37].

... ...
...

. . .
...

...
(4)
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In this paper, we only demonstrate our method via a spe-
cific scenario where the worst element state is treated as the
failure state of each element, and the repair action is triggered
once an element fails. This sort of maintenance strategy has
been adopted in engineering practice when conducting any
maintenance activity is expensive, and would incur too much
production lost. For example, for some sophisticated man-
ufacturing systems, performing preventive maintenance at
degraded states of a product line (can be viewed as a MSE) re-
quires turning off this product line, which may incur expensive
inspection and disassembly costs, as well as a huge production
lost. Some infrastructure systems and facilities may also face
the same issue. For instance, maintaining buried pipe systems
often incurs much additional cost from digging trenches. In
all of these cases, it is much more economically efficient to
perform maintenance whenever elements fall into an unaccept-
able or failure state. In this scenario, the probability matrix of
element restoring to the higher performance states after repair
can be abstracted from the first row of , and is denoted as

. Because it is
possible for the repaired element to start working while in the
degraded states (i.e. state 2 to state ) after repair, one needs
to evaluate the state distribution in these situations. Resorting
to the Markov model introduced in Section 2.2, the state distri-
bution of element with initial state , ,
can be obtained through solving (1) under the condition

and for . To make the
notation clearer, in the rest of this paper, we use to
represent the probability of element staying at state in the
first repair cycle with initial state , and to represent
the probability of element staying at state in the repair
cycle with initial state . Therefore, based on the aforemen-
tioned imperfect repair model, a set of sequential nonnegative
random variables , where

( , , ) denotes
the random time that element sojourns in state during the
repair cycle with initial state . In the same fashion, if one as-
sumes the relations , ,

, hold, where random quantities
, are i.i.d., the sequence of random

variables also has the
monotonically decreasing character, and the probability

can be derived as . Accordingly, the
time duration of element sojourning in state during the
repair cycle is given by

(5)

The associate state probability is expressed as

(6)

In the same fashion as (2), the expectation of can be
written as

(7)

where is the expected time of the element staying at
state in the first repair cycle with initial state . Because the
element state 1 is viewed as the failure state, one can derive the
MTTF of the repair cycle, analogous with (3), as

(8)
where is the MTTF of element in the first repair cycle
with initial state .
On the other hand, the duration of each repair activity follows

the monotonically increasing trend with respect to the number
of repairs, and it is represented by an increasing quasi-renewal
process with the parameter . The successive repair
durations form a sequence of nonnegative random variables

. The expected repair time for element
in the repair cycle is given by

(9)

where is the mean time of repairing element in the first
repair cycle.
The replacement policy being considered for each individual

element is called policy , in which the element is replaced
by an identical brand new one once its number of failures
reaches the pre-determined value . Let be
the time duration of the replacement cycle. Apparently,

forms a renewal process. We use random
variable denoting the time spent on replacement action,
and denoting its expected mean value. Thus, the average
probability that the element sojourns in state under
policy can be computed by

(10)

where
(11)

(12)

(13)

(14)

IV. REPAIR EFFICIENCY VERSUS ASSIGNED REPAIR COST

To reflect the relation between improvement from repair and
its related cost, Lie and Chuan [46] implement a set of func-
tions to build accurate functional relationships between the ratio
of PM cost to preventive replacement cost, and the system im-
provement after PM. Malik [47] points out that the maintenance
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improvement can be approximately inferred via expert judg-
ment. Intuitively, if the spent repair cost approaches zero, the
improvement will approach zero also; oppositely, if the repair
cost approaches the maximum value, the repaired system would
approach the as good as new condition [33]. Based on this rela-
tion, and the imperfect repair model proposed in this paper, the
repair expenditure has twofold impacts on the repair efficiency.
As more resources are spent, the deteriorating trend of the re-
paired element will become lower in the next repair cycle, and
the element will have a greater probability of recovering to a
higher state after repair. In the ensuing paragraphs, two hypo-
thetical functions linking the assigned repair cost to its impact
on the repaired element are proposed tomathematically describe
the exact relationship.
The imperfect repair parameter in our proposed model is

defined as a power function of the assigned repair cost as follows

(15)

where , . and can be estimated via
experts’ knowledge, as well as the operation and maintenance
records from experiments and field use. It is obvious that, with
a higher , the repair is more effective even if the expenditure
is low, corresponding to the situation where the element would
restore to a better condition via fixing a few parts and modules.
On the other hand, if is lower than 1.0, it can be found that re-
pair action is less effective, particularly with low expenditure. It
corresponds to the scenario where the element repair efficiency
is not significant unless most of the parts and modules are being
repaired.
As this paper only considers the scenario where an element

is repaired once it falls into the worst state, we can only define
instead of . Hence, is written as

(16)

where is a vector, and

...
...

...
. . .

...
...

(17)
where ( , for
) represents the one-step transition probability that the state,
which the element is being restored to, transits from state to
state , and it satisfies . To link the
with the assigned repair cost, a hypothetical function defining

as a power function of the assigned repair is given as

(18)

where the characteristic parameter ( for )
is also estimated via expert’s knowledge, and historical mainte-
nance records.

V. MSS PERFORMANCE & RAP FORMULATION

Based upon the imperfect repair model introduced in
Section III, the average state distribution for each element can
be calculated via (10), and it can be expressed by the UGF in a
polynomial form as ; whereas the
average system performance distribution can be also written in
the same UGF fashion as which can
be determined by UGFs of elements via the UGF composition
rules [9]. The system availability in our work is defined as the
probability that the system performance is not less than the user
demand level [9], and it is formulated as

(19)

where denotes possible user demand levels; is the
possible user demand level, and is the associated probability.
Suppose a system has subsystems, and in each sub-

system there are versions of elements available for use. In-
stead of the notation in the above sections, the subscript is
used to denote that a version element is in subsystem in the
subsequent context. The total expenditure for any element con-
sists of two categories: the assigned repair cost for each
element failure, and the replacement cost . It is reason-

able to suppose , because replacement oftentimes
involves too much transportation and installation expenditure.
The associated replacement policy for elements is thereby de-
noted as the replacement policy . Hence, the total main-
tenance expenditure of element in its lifecycle is equal to

. The average maintenance expenditure
of element per unit time is given by

(20)
The overall average system maintenance expenditure per unit
time is determined as

(21)

where is the redundancy level of the version element in
subsystem .
With the purpose of achieving the required system avail-

ability under user demand, the RAP is to determine not only
the optimal redundancy levels of elements of different versions,
but also the optimal strategy of assigning repair cost and
element replacement policy to minimize the average
system expenditure within the lifecycle. It can be formulated as

(22)
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Fig. 2. The structure of a three-stage coal transportation system.

TABLE I
STATE PERFORMANCE RATES, AND TRANSITION INTENSITIES

VI. GENETIC ALGORITHM IMPLEMENTATION

The optimization problem formulated in (22) is a complex
non-linear optimization problem with mixed continuous and
discrete decision variables. An exhaustive examination of all
the solution space is not realistic due to the computational
time constraint. The advanced meta-heuristic algorithms, such
as genetic algorithm (GA), Tabu search, simulated annealing
algorithm, and ant colony optimization (ACO), are effective
approaches to search the global optimal solution in a compu-
tationally efficient manner. Among these algorithms, GA is
one of the most widely used methods to solve various kinds of
optimization problems due to its flexibility in representing both
continuous and discrete decision variables, good global opti-
mization capability, and it has been successfully applied to an
abundance of optimization problems in reliability engineering
(Levitin [9], and Tian et al. [18]), as well as maintenance
optimization problems (Levitin and Lisnianski [15], [18], and
Liu and Huang [33]). Thus, GA is tailored in this paper to
facilitate searching the global optimal solution.
To apply the GA to a specific problem, solution representa-

tion is necessary. To keep the diversity of the population (a set
of solutions), crossover, mutation, and selection procedures are
executed during the searching iterations, with the solution re-
ferred to as a chromosome. The main GA procedure for the for-
mulated optimization problem is as follows.

1. Population initialization. The chromosome consists of
three parts with the length for each part.
Therefore, the entire length of the chromosome for a single

TABLE II
PARAMETERS OF EACH ELEMENT

TABLE III
USER DEMAND LEVELS

solution is , and the chromosome is denoted as a string
,

where for is the non-negative integer
corresponding to redundancy level for the element of each
version; for represents
the ratio of assigned repair cost to the maximum repair
cost. Thus, the corresponding assigned repair cost is equal
to ; for , is the
replacement policy for the element of each version. Then,
one generates the initial population with size .

2. Fitness evaluation. The average system expenditure
is used as the fitness value for each chromosome. To
compute and for any individual chromosome,
seven steps should be followed:
a. Derive the state probabilities of the first
repair cycle for each element via (1).

b. According to the assigned repair cost, compute ,
and (or ) for each element via (15) through
(18).

c. Derive the state probabilities , ,
, and of remaining repair cycles for

each element via (6) through (9).
d. Compute the average state probabilities for each
element via (10).

e. Generate the UFG for each element based on
the average state probabilities derived from the
last step.

f. Generate the UFG for the entire systems
by using UGFs of all the elements and the UGF
composition rules.

g. Compute the average system maintenance
expenditure , and the system availability
via (19) through (21).

The smaller , the higher the fitness value. The penalty
function approach can be employed to handle infeasible
solutions which violates the availability constraint

. The first chromosomes with the highest
fitness value in the current iteration are reserved for the
next iteration.

3. New population generation. The roulette-wheel selection
scheme is used to randomly select chromosomes from
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TABLE IV
OPTIMAL SOLUTIONS IN DIFFERENT CASES

the current iteration based on their fitness values, to form
a new population for the next iteration. The crossover
and mutation operators are utilized to generate new
chromosomes to keep the population diversity, and to
explore the unsearched solution space. Because the
chromosome consists of continuous, discrete digits with
different range, the crossover and mutation operators
are executed separately for each of the three parts to
keep the digits within their allowable bounds. The
chromosomes reserved in the previous iteration are put
into the new generation directly.

4. Iterative process termination. The procedure terminates
once the iteration count reaches . Otherwise, go to Step
2 for the next iteration.

The computational efficiency of the GA is acceptable in our il-
lustrative examples. If the computation time of the GA is un-
affordable for systems consisting of a large number of compo-
nents, many other advanced meta-heuristic algorithms with a
greater computational efficiency can also be tailored to solve
the resulting optimization problem.

VII. ILLUSTRATIVE EXAMPLE

The studied system is a three-stage coal transportation system
with a series-parallel structure, as shown in Fig. 2. For each
subsystem, several versions of the elements are available to be
chosen. The element state performance rates and the associated
state transition intensities for the first repair cycle are tabulated
in Table I. Other parameters related to maintenance time and
cost, as well as characteristic parameters in the hypothetical (15)
and (18), are listed in Table II, where the units for cost, and time
are , and one month, respectively.
Given the random user demand levels as shown in Table III,

and the desired system availability , the minimum
average system maintenance expenditure per unit time can be
achieved via optimally determining the redundancy levels, re-
pair cost, and the replacement policy for each element version.
The proposed GA is executed 10 times via Matlab on a PC

with an Intel Core(TM) Duo 2 GHz CPU, and 4 GB RAM;
and the mean, and standard deviation of computation time for a
single run are 333.51 sec, and 77.94 sec respectively, when
is set to 80, and is 500. The best solution among these results
is presented in Table IV as Case I. It shows that, except for el-
ement Version 1 in Subsystem 1, all elements of other versions
are assigned a repair cost which is less than the maximum repair

cost. For example, the optimal assigned repair cost for el-
ement Version 1 in Subsystem 2 is , which means the
associated parameter , and the probability matrix

for this type of element can be expressed as

Based on (6), the state probabilities of this type of element in
each repair cycle can be written as

and they are plotted in Fig. 3. As shown in Fig. 3, compared
to the previous repair cycle, the repaired element has a faster
degradation trend in the next repair cycle. On the other hand, the
probability that the repaired element is restored to the best state
3 decreases with the increase of the number of repair cycles,
whereas the probability of being restored to state 2 increases.
To illustrate the validity of the analytical results from the pro-

posed models, Monte Carlo simulation is used here, in which
10,000 realizations of deterioration processes of the examined
element are randomly generated. It is expected that the analyt-
ical results should be identical with that of simulation. The flow-
chart for generating a realization of the deterioration process is
illustrated in Fig. 4. For any individual realization of the exam-
ined element , the amount of time that the element tran-
sits from any state with a higher performance rate to the state

with a lower performance rate can be
randomly generated by an exponential distribution based on the
state transition intensities of the first repair cycle. In the re-
pair cycle, because the state transition intensities of the repaired
element increase proportionally as proposed in this paper, the
state transition time can be computed by .
The element will jump from the higher state into the lower
state which has the minimal state transition time among other
lower states, i.e. . The element
will be repaired until it reaches the failure state, and restored to
higher states with probability . This simulation process
continues running until the number of repairs reaches ; then
an individual realization of the deterioration process of element
is completely generated. In the repair cycle, the state prob-
ability at time equals the ratio of the number of ele-
ments being right at state to the total number of realizations.
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Fig. 3. The state probabilities from both analytical and simulation results for element Version 1 in Subsystem 2. (a) for state 3; (b) for state 2;
(c) for state 1.

Fig. 4. The flowchart of generating a realization of the deterioration process.

As observed from Fig. 3, we can conclude that the results from
the proposed models and simulation are identical.
To demonstrate the efficiency and effectiveness of the pro-

posed method, solutions from other scenarios are tabulated in
Table IV. Case II is the scenario where the failed elements are re-
paired as good as new (replacement) once they fail. In this Case
II, the optimal system configuration is completely different from
Case I, and the associated system expenditure is 72% higher
than in Case I. It indicates that taking the imperfect mainte-

TABLE V
OPTIMAL SOLUTIONS UNDER VARIOUS REQUIRED

AVAILABILITY CONSTRAINTS

nance efficiency into account will result a better solution than
assuming the maintenance is perfect. With the aim to show the
advantage of assigning the repair cost for each element strate-
gically over distributing evenly, the optimal solution of Case III
where the ratio is identical for each version of the ele-
ments is also listed in Table IV. The optimal value of the ratio

solved by GA optimization is 0.25. Obviously, for Case
III, the minimum achievable system expenditure is somewhat
higher, with percentages of 30%, than the Case I, but is lower
than Case II. Case IV is the situation of assigning a maximum
repair cost (i.e. ) to each repair actions, and the corresponding
system expenditure is 4% higher than in Case I. We conclude
that strategically assigning the repair cost for each element ac-
cording to their repair cost versus repair efficiency relation is
more beneficial than evenly or maximally distributing cases.
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To study the impact from the availability constraint, we tab-
ulate the optimal solutions under different desired availability
in Table V. As the required availability becomes higher, the av-
erage system expenditure increases, and the system configura-
tions vary from case to case. The number of Version 2 elements
in Subsystem 2 increases as the required availability changes
from 0.9 to 0.97; whereas the number of Version 1 elements de-
creases. The Version 2 element is more cost efficient compared
to Version 1, with the increase of the desired availability. The
similar observation can also be found for Subsystem 3, where
the Version 1 element outperforms others in the cases with a
higher availability constraint.

VIII. REMARKS AND CLOSURE

This paper develops a RAP considering a joint optimization
of the redundancy level and maintenance strategy in the system
design stage. Compared to the existing literature that accounts
for the same issues, the unique features of this paper are twofold.
First, nearly all the existing literature assumes that repaired el-
ements are either in as good as new condition, essentially re-
placed at failure, or in as bad as old condition, essentially un-
changed at failure. It has been argued that this hypothesis cannot
hold inmost practical problems. To quantify the imperfect main-
tenance efficiency, a generalized imperfect repair model is pro-
posed in this paper to characterize the monotonic increasing
trend of the element deteriorating process after repair. The es-
sential characteristics of the proposed model are that, not only
will the transition pace of the repaired element proportionally
increase in the next repair cycle, but also the probability of the
states in which the repaired element restores to will vary as the
repair number increases. The extended imperfect maintenance
model is more general, and has a broader application than the
one proposed in our previous work. The second important fea-
ture of this work is intended to link the assigned repair cost with
its corresponding repair efficiency to allow amore economically
efficient maintenance management for MSSs. Two hypothetical
functions are proposed to construct the functional relationship
between the parameters of imperfect repair models and the as-
signed repair cost. The proposed model provides the flexibility
to determine the system configuration along with the mainte-
nance strategy at the early system design phase to achieve the
desired system availability with minimum expected lifecycle
expenditure.
It is noteworthy that, even though the proposed method is

only demonstrated via a specific scenario where elements are
repaired only when they fall into failure state, it can be further
extended to a more general case where the preventive mainte-
nance activities are conducted at immediate states of elements
if the transition probability matrix is completely known
in advance. The generalized imperfect repair model developed
in this paper provides an alternative tool to quantify the imper-
fect maintenance efficiency for MSEs, and it is able to capture
the phenomena that the degradation pace of repaired elements
will proportionally increase with the times of repairs. However,
note that not all the repairableMSSs possess this feature in prac-
tice. Model validation or selection is, therefore, required before
applying this model to a specific engineered system [48]. Mean-
while, there is still a need for developing more imperfect main-
tenance models with various underlying physics to accurately
characterize complex stochastic behaviors of repairable MSSs.
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