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Abstract—Because of the complexity of engineering systems, and
the fact that insufficient data are only available to obtain the pre-
cise state probability of components, an extended universal gener-
ating function (UGF) based on belief function theory is introduced
in this paper to conduct the reliability analysis of multi-state sys-
tems (MSSs) with epistemic uncertainty. The behavior of common
cause failures (CCFs) is further incorporated, and the occurrence
probability of CCFs is evaluated using a weighted impact vector
method. A numerical example is used to illustrate how the pro-
posed method works. In addition, a global optimization method is
used to obtain the truth interval of the system reliability, and the
results are compared with those obtained by using some existing
methods. The case study shows that the belief UGF method can
effectively avoid the interval expansion problem and the overes-
timation problem involved in the interval UGF method, and the
proposed method can be used to provide a reliable way to evaluate
the reliability of MSSs with interval data and CCFs.

Index Terms—Universal generating function, multi-state

system, epistemic uncertainty, belief function theory, common
cause failure, cc-factor method.
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NOTATION
D Frame of discernment
m(-) Mass function
Bel(X) Belief function of event X
Pel(X) Plausibility function of event X
g; Performance state space of component j
Gii ith state of component j
9. Focal element i after mapping by mass function
P, Lower bound of ith state probability of component
D %Jpper bound of ith state probability of component j
[pi 5] Interval state probability
$ System structure function
perf; State performance level of component j
prob; State probability of component j
Ui(z) z function (UGF) of the component i
UJB (z) BUGF of component j
Uéi (z) IUGF of component i
[R;] Interval-valued system reliability
Qr Failure frequency of & components
o The k-th parameter of a-factor mode
Vi Component degradation value
I, The weighted impact vector
Fy (i) The k-th element of weighted impact vector

I. INTRODUCTION

ECAUSE a system is designed to perform its intended

task under given working conditions, it can usually
perform the task with several levels of efficiency or perfor-
mance. Such a system can be referred to as a multi-state system
(MSS) [1], which has attracted much attention during the
past few years. Different methods, such as extension Boolean
models, stochastic processes, Monte Carlo simulations, and
the universal generating function (UGF) method have been
proposed to conduct the reliability analysis of MSSs [2]-[19].
Compared with the first three methods, which are only suitable
for small scale MSSs due to the computational complexity, the
UGF method has a high-computing speed, and is very easy to
implement.
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The UGF is an important method of modern discrete math-
ematics, which was first introduced by Ushakov [4], and was
extended by Levitin et al. [1], [5S]-[13] to evaluate the reli-
ability and survivability of different types of MSSs. It is a
powerful tool for the reliability modeling and assessment of
large scale MSSs. Some extensions of traditional UGFs have
been developed to handle the reliability analysis of complex
systems under different conditions. Ding and Lisnianski [14],
[15] developed a fuzzy UGF to extend the UGF with crisp
sets, and gave a definition of fuzzy MSSs. Then, Liu and
Huang [16] proposed a modified fuzzy MSS reliability as-
sessment approach to address the uncertainty associated with
state transition intersities. Li et al. [17] proposed a random
fuzzy extension of the UGF method for MSS reliability as-
sessment. Destercke and Sallak [2] presented an extension of
the UGF method considering epistemic uncertainties based
on belief function theory. Li [18], [19] proposed an interval
UGF (IUGF) to analyze the reliability of MSSs when the
available data about components are insufficient.

In practice, to ensure the high reliability and high safety
of products, especially at the early stage of product design,
designers have to face the situation when only insufficient
data or imperfect information are available [20]. Uncertainty
is a concern in aviation and aerospace industries because of
the small samples, complex structure, and expensive cost of
these products. There are various methods, such as Bayes
theory, fuzzy set theory, Dempster-Shafer (D-S) evidential
theory, information-gaps method, etc. [2], [15], [21] to cope
with the uncertainty. Wang and Li [22] investigated the ef-
fects of uncertainty in both component reliability and load
demand on system reliability for general MSSs. An impre-
cise Dirichlet model (IDM) was used by Troffaes [23] to rep-
resent epistemic uncertainty in the a-factor model. Zaman
et al. [24] proposed a probabilistic approach to represent
interval data for input variables in uncertainty analysis. A
likelihood-based methodology was proposed to represent the
epistemic uncertainty due to interval data or sparse point data
by Sankararaman and Mahadevan [25].

Common cause failures (CCFs) are initiated by some
common or shared fundamental causes. CCFs are s-dependent
failures, which widely exist in engineering systems, such
as mechanical systems and electric systems. For a system
with CCFs, the reliability assessment, which is based on the
assumption that the component failures are s-independent,
may lead to errors [26], [27]. Considering CCFs in systems,
many methods have been proposed to estimate and evaluate
the probability of a common cause event. Examples include
the basic parameter model, a-factor method, 5-factor method,
multiple Greek letters (MGL) model, etc. [28]. The S-factor
method was introduced by Fleming [29], which is one of the
simplest and the most commonly used quantitative methods
for CCFs in engineering. However, this 3-factor method is
based on published statistics and engineering experience, can
be only used as a rough estimate, and cannot be used to get
an accurate result [30]. The a-factor model was developed by
Mosleh and Siu [28], [31], which is a multi-parameter model
that can be used to handle any redundancy level systems. The
assessment of «a-factor model parameters can be performed
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based on ratios of failure rates when there are no available
statistical data [32]. With the progress of the understanding
of the CCF occurring-mechanism, the United States Nuclear
Regulatory Commission has developed a database for CCF
parameters estimation based on the a-factor model and the
MGL model [32], [33]. Over the past few years, the methods
used for estimating the a-factor for CCF systems have been
developed, and some extensions of a-factor have been made
[34], [35].

In general, there exist extensive research efforts on using
UGFs for the reliability analysis of MSSs subject to CCFs
[7]-[13]. The interval mathematics or belief function in com-
bination with UGFs has been used to model the uncertainty
in MSSs [17]-[19]. To the best of our knowledge, none of the
existing works has considered the effect of CCFs and uncer-
tainty simultaneously in the reliability analysis of MSSs. In this
paper, considering the complexity of the system, and insuffi-
cient available data, a method that integrates an extended UGF
with the belief function theory is proposed for the reliability
analysis of MSSs subject to epistemic uncertainty. Based on the
aforementioned advantages of the «-factor method, a weighted
impact vector method is employed to quantify the probability
of CCFs in the system.

The remainder of this paper is organized as follows. In
Section II, we present an extension of UGFs using belief func-
tion theory, and review the UGF and interval-valued UGFs.
We employ the a-factor model and the weighted impact vector
to calculate the occurrence probability of CCFs in Section III.
Section IV modifies the form of belief UGFs (BUGF) and
IUGFs when the CCFs in MSSs are considered. A numer-
ical example is provided to illustrate the proposed method in
Section V. Because the global optimization method can con-
sider all the constraint conditions, it is used to obtain the true
interval of the system reliability, and the results are compared
with the BUGF and IUGF methods. Section VI concludes this

paper.
II. UGF AND ITS EXTENSION IN MSSS RELIABILITY ANALYSIS

The UGF is an important method for the reliability analysis
of MSS, which can clearly establish the relationship between
state performances and probabilities of components and sys-
tems. This UGF method is flexible, and it has been widely ap-
plied to design different synthetic operators for different system
structures and working conditions.

The basis of MSS reliability analysis is the state performance
of components and their corresponding state probabilities. Lots
of information and data are needed to determine the exact prob-
ability and performance level of each component state when
the probabilistic methods are used to perform the reliability
analysis of MSSs. In engineering practice, because of the com-
plexity of systems, limited test samples, and insufficient data,
the accurate values of state performance levels and state prob-
abilities cannot be obtained; but we can get good upper and
lower bounds of them. In this case, the probabilistic method is
no longer applicable, and the non-probabilistic methods, such
as interval theory, fuzzy theory, possibility theory, and belief
function theory, have to be applied to the reliability analysis of
MSSs.
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A. Belief Function Theory

Belief function theory is an important theory for representing
and manipulating epistemic uncertainties. It was first proposed
by Dempster [36], [37], and then developed by Shafer [38]. The
basic idea is to use a multivalued mapping method to obtain
the upper and lower bounds of probabilities. Specifically, the
basic probability assignment (BPA) function is used to obtain
the posterior confidence interval, and the plausibility function
and belief function are used as the upper and lower bounds of a
confidence interval to describe the uncertainty of propositions.
The basic notions and operations of belief function theory are
explained as follows. For more details, refer to [39]-[42].

Belief function theory is defined on a discrete set called the
frame of discernment D, which is composed of a series of
s-independent and mutually exclusive discriminate assump-
tions. Moreover, D) is a sample space of variable x, and thus
contains all possible values of 2. The belief function is based
on the power set of D, and the power set contains 2" elements
when D contains n elements. A BPA is defined on the frame of
discernment D to describe the differentiation of focal elements;
that is, m(X) : 2P — [0, 1], which means the mapping from
each element of 2” to a number in [0, 1], and satisfies the
following two conditions.

1) The BPA of null set @ is equal to zero; that is, m(0) = 0.

2) Normalization, such that ), ,p m(X) = 1.
The second condition means that the sum of all the BPA of focal
elements in power set 2° equals to 1. Each set X for which
m(X) > 0 is referred to as a focal element. The mass m(X) is
the BPA of each focal element. For YX C D, m(X) represents
the precise belief degree of focal element X, and m(D) is the
degree of uncertainty and the ignorance of a proposition [43].

For any event X C D, the belief function and plausibility
function could be defined from a mass function m as

Bel(X)= Y _ m(Y), (1)
PI(X) = i m(Y). 2)
YNX#()

Bel(X) is the total mass of information implying the occur-
rence of X, and it can be viewed as the lower bound on a set of
probability measures. PI{X) measures the degree of event X
consistent with information m(Y"), and it can be viewed as the
upper bound. The value PI{X) — Bel(X) is a measure of infor-
mation insufficient regarding the uncertainty of event X, which
is the epistemic uncertainty about X [42], [44]. Then, the pair
of functions [Bel(X), PI(X)] composes an integrated uncer-
tainty interval of event X, which can be used to describe the
uncertainty of focal element X . Fig. 1 shows the division of the
belief degree of X in belief function theory.

When the interval length of [Bel(X), PI(X)] for each ele-
ment in the frame of discernment D is equal to zero, which
means PI(X) = 1 — Bel(X), then the belief function theory
is the same as the Bayesian theory. [Bel(X), PI{X)] = [0,1]
means a complete lack of information, and illustrates that this
evidence is ignorant of event X
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Fig. 1. The division of belief degree of X in belief function theory.

B. Extend UGF to Belief UGF

Suppose a component ¢ has N states, the performance
levels of these states are X = {x;,23,---,2n}, and the
corresponding probability of the component i at state z;
is pj = Pr{X=2;}(1 < j < N). The elements of
{p1,p2,--+,pn} are the corresponding state probabilities of
each state performance level. Then, the UGF of the variable X
(corresponding to component 7) can be expressed as

N
Ui(z) =) piz". ®)
j=1

Assume that component j has m; states, the performance
state space can be expressed as g; = {g;,1,95,2:" "> Gjm; }»
and the corresponding intervals of the states' probabilities are
[}_?j,l’ﬁjvl]’ R [gj.mj’ﬁj-mi]' Denoeux [45] proposed an effi-
cient way to obtain a mass function from probability intervals,
and this interval method has been mathematically proven in
[44], [46]. When considering the computational efficiency, the
following precise mass function with fewer focal elements

is derived by a simple approximation method from intervals
p, 53] (2], [45), [46],

P, (S =gjm)

m;
S =013 p, . (S ={g2 s gim, b))
0 met else

4)

where S is a set containing all states of component j, and
is a mass function on state space g;, which is the mapping
from each element of state probability intervals to set [0, 1].
After the use of the mapping provided by the mass function
m(S), the focal elements of components j can be indicated as
915,15 19l5,2, -+ [9]4,k, - For asystem with n components, when
the system performance level g; is set-valued and expressed
as [g9];, (1 < j < n,[g]; C g;), the relationship of system
structures before and after the mapping can be expressed as

)

D (gl [9l) = {® (g1, 90) 0 € [9); } -
Let m; ; denote the mass of [g];;(1 < ¢ < k;,1 < j <
n), then the information about the state of each component j is
transformed into the z function, which is the BUGF. The BUGF
of component j with k; performance states can be defined as

kg
UP (2) = ijyiz{g]“. (6)
i=1
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To obtain the BUGF of MSSs, using {2 to represent the com-
pound operator of the BUGF, define (7) at the bottom of the
page.

When system performance values are interval-valued, ® can
be obtained by interval algorithms in [18]. The BUGF of MSSs
with n components is shown in (8) at the bottom of the page.

When the system performance requirement is w, the fol-
lowing two operators are employed to compute the plausibility
and belief values of event X [2].

() = { ol El )
() = {1 2l cw g
@([g]1,- -+, [g]n) Nw # O in (9) means that at least one el-

ement of the interval-valued performance & is above or equal
to requirement w. ®([g]1, - -, [g]n) € w as used in (10) means
that all elements in ¢ are above or equal to w. For instance,
when the system space of a 3-state system is {1.5,2, {1.5,2}},
and w = 1.7, then 1}, (22%) = 0,1}(2?) = 1, 1, ({1-52}) =
1,and 1,(21%) = 0,1, (2%) = 1, 1., (211-%2}) = 0. While the
state performance meets the requirement w, the upper bound
Pl{w) and lower bound Bel(w) of the system reliability can be
calculated by formulas (11) and (12) at the bottom of the page.

C. Interval UGF

For comparison, a non-probabilistic method called the IUGF,
proposed by Li ez al. [18], is employed in this paper. An interval
number is defined as [y] = [y, §] = {yly < y < §}. Forinterval
numbers [z] = [z, Z] and [y], the basic multiplication operation
used in this paper can be defined as

=] - [y]

[min {2y, 27, 2y, 27} , max {zy, 27, Ty, 25 }] ,
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when z > 0, y > 0. The multiplication rule can be simplified as

(2] - [y] = [y, 2] - (14)

Let prob; = {[pi1],[piz2), -, [pi n:]} denote the interval-
valued state probabilities. Then the IUGF of component ¢ is de-
fined as

i

N;
UG z) :Zp”
=1

According to the component state performance and the state
probability, the system UGF can be derived from the system
structure and the compound operation of the component UGF.
When €2 is used to represent the compound operator, the system
UGEF can be expressed as

(15

Ulz) = UGk z) Zprob zperds

(16)

Q (U, (2), U, (2).-

where N is the number of system states, and per f; and prob;
are the state performance and the corresponding state interval
probability. When the system is composed of two components,
and all state performances of the components are precise, then
the compound operator €2 can be defined as

N1 Nz

ZZ Pig] - [pa]2Perf (@rewan),
=1 k=1
(17)

When these two components are in series, which means that
the system performance level is equal to the minimum of that
of the components, then perfy(z1x, 221) min(zyy, 297).
When the system performance level is equal to the maximum

Q (UGI( UG2

(13)  of all components' performance levels, perfa(z1k, x21) =
ky ko
Q4 (UlB (2),09 ( Z Z my g, - M2, 2 q)([g]l’”’[g]”’”) @)
ll 122 1
k1 kn n
ZjS (Z) Q¢ (Ul ( )7 B Z)) = Z PR Z Hrmjﬂqu)([g]l,il7"'7[9}71,1'") (8)
ii=1  i,=1j=1
k1 kn n k1 kn n
Plw) =150 ) =15 > > [T mai2® | =D > [ mass 1 (11)
i1=1  ip=1j=1 i1=1  in=1j=1
ki1 kn n k1 kn n
Bel(w) =1,(U2) =1, [ > > [[minz® | =D [[mis e (12)
i1=1 i,=1j=1 i1=1  ip=1j=1
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max 1k, 22;). When the system performance level is
equal to the sum of the components' performance levels,
perfa(xip, xu) = x1k + 2.

For a demand level w, the system reliability [R!] is finally
computed using (18) at the bottom of the page.

III. CALCULATING THE PROBABILITY OF CCF THROUGH
a-FACTOR MODEL AND WEIGHTED IMPACT VECTOR

A. «-Factor Model

Based on the advantage introduced in Section I, the a-factor
model is selected to analyze CCFs in this paper. The frequency
of CCFs is determined by a series of component failure ratios
and overall failure probability in the a-factor model. Consid-
ering a parallel system with 3 components A, B, and C, when
considering the CCF, the failure probability of component A is
composed of 4 parts: P(Ar) = @y, which is the probability
of s-independent failure of A; P(Cag) = 2, which is the
CCF probability of components A and B; P(C ac ), which is the
CCF probability of components A and C'; and P(Capc) = Qs,
which is the failure probability of the whole set of three compo-
nents caused by CCFs. The failure probability of component A
is P(AT) = P(A[) + P(CAB) + P(CAO) + P(CABc). As-
sume that P(A;) = P(By) = P(Cy) = @1, and P{Csp) =
P(Cuc) = P(Cpc) = Q2. The component A failure proba-
bility is @r = Q1+ 2Q2 + Q3 [28].

The a-factors are oy = Q1/Qr, a2 = 2Q2/Q1, and a3 =
Q3/Qr. Therefore, the system failure probability ¢ can be
written as (19) at the bottom of the page.

Therefore, for a system with m components, Q7 represents
the total failure frequency of each component, and ay is the
fraction of the total frequency of failure events that occur in the
system involving the failure of & components. For the staggered
testing scheme, where only one component is tested in a test
episode, and when there is a failure, the rest of the components
will be tested. The a-factor is defined as [32], [33]

m—1 (m)
k—1 k

Qs ’

QA — (20)
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with 37" | a = 1. Using the maximum likelihood estimation
(MLE) method, the parameter of the a-factor model is derived
as

ni

m
>N
i=1

OA‘k = ) (21)

where &y, is the k-th estimated parameter for the a-factor model,
and n; is the number of basic events when j components fail
simultaneously, (1 < j < m). Thus, ny is the total number of
basic events involving the failure of & similar components, and
we use the following weighted impact vector method to get the
ng.

B. Weighted Impact Vector Method

According to the strict definition of CCFs, multiple redundant
components will fail simultaneously when a CCF event occurs.
However, in engineering, components often suffer degradation
rather than direct failure. Here, we use the component degrada-
tion value Vi to describe the relationship between the redundant
components and the probability of CCFs. The value V4 actu-
ally measures the severity of component degradation (the prob-
ability of component failure caused by its functional degrada-
tion). There are four categories of impact factors for component
CCFs: the external environment; the interior component aging;
the design, manufacturing, and installation quality; and human
errors [47]. Only the first two categories are considered in this
paper, and are elaborated as follows.

1) External Environment: CCFs occur when the harsh
working environment of the component exceeds the design
limitation, and the external environment impact factor begins
to take effect on the component degradation factor. The stress
strength interference (SSI) model is introduced to compute V4. In
this model, the strength of a component is defined as the ability to
withstand environmental stress. The SSI model for environment
stress and component strength is shown in Fig. 2. The resistance
abilities to environmental stress of a large number of products will
follows a normal distribution. When environmental stress meets
or exceeds the resistance abilities of the product, the products
with low resistance ability to environmental stress will fail. The
failure probability of the component increases with the area of the
overlappedrange, so the area is defined as V.

2) Interior Component Aging: Let Vi, denote the failure
probability of a component due to its interior component aging.

[R! ()] = Pperf > w) = [prob.] - p (perfs — w > 0)

(18)
s5=1
Qs = P(AI) +P(BI) +P(CI) + P(CAB) + P(CAc) —‘rP(CBc) + P(CABc)
=3Q1 +3Q2 + Q3
=3(a1Q7) + g (a2Qr) + (3Qr) (19)
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Fig.2. Calculation of ¥}, based on SSI model.

TABLE I
IMPACT VECTOR ASSESSMENT OF COMPONENT DEGRADATIONS

Comp Elements of impact vector

group In=(Eh Fl, FZ,M)

size n F, F, F, F;

) - Va-v)+ vy, -
a-=r) AN
A-V)  Va-ma-m+  WLa-¥)+

3 A=)  na-Na-r+  KWa-r+ W —
a=-r)  rna-mni-r) Vya-n

The failure probability of components is calculated by classical
life distributions, e.g., the exponential distribution is used for
electronic components, and the Weibull distribution is used for
mechanic components, and so on.

While the degradation value of the components is regarded
as the failure probability, the average event impact vector for
various elements can be calculated based on all the combination
of the possible failures. The Vi based computation method for
the weighted impact vector is shown in Table I, where I,, is the
impact vector, and I}, are the elements of the impact vector
which can be easily calculated for component groups of sizes
2 and 3 [32], [47].

Using the weighted impact vector, the number of basic events
involving k& components failing simultaneously can be calcu-
lated by

m

ne =Y wiFi(i), (22)
i=1

where m is the number of CCF categories considered in the
CCF analysis, w; is the weight of the i-th CCF cause category
(determined by the industrial reliability database), and F}, (i) can
be calculated by using the method in Table I.

C. Example

Suppose a system is comprised of two components: a con-
troller, and a body part. The life distribution of the controller
conforms to an exponential distribution with a parameter A, and
the life distribution of the body part obeys a Weibull distribution
with two parameters « and 3 [47]. The parameters of these two

1305
TABLE 11
THE MODEL PARAMETERS AND RESULTS OF WEIGHTED
IMPACT VECTOR METHOD
Impact Parameters 4 £ Va . Weighted
factor impact vector
Env;ri)rll\]r?gn]t;ﬂ (0.743,
Exterior > 0.329  0.21 0.06 0.245,
Si~N(3.1,1.5%) 0.0126)
S»~N(3.2,0.7%) :
j’fzﬁl ; (0.792,
Interior =, 0671 012 0.1 0.0196,
Ar=46; 0.012)
(lz=743,ﬁ2= 15 :

components are listed in Table II. The component degradation
value V4, and the impact vector I,, are listed in Table II.

From (20) and (21), n1, n2, and «» are calculated as 0.0938,
0.0122, and 0.1151, respectively. Thus, the CCF probability
a. for this redundant system comprised of two components is
0.1151.

IV. INCORPORATING CCFSs INTO BELIEF UGF OF MSS

To incorporate the impact of CCFs on the performance of
MSSs, the UGF is modified in this section, and some assump-
tions used in the proposed method are made in the following.

1) The system is non-repairable.

2) The generalized strength of each component in the system
is s-independent.

3) There are N types of common cause groups in the system,
and each group (e.g., group j) is composed of ; identical
elements.

The failure rates of different common cause levels are only
related to the number of failed components, and are irrelevant
to specific components [19], [48]. Assume that all components
of a common cause group will fail when any loads exceed the
limit of components. When explosion occurs, the load is much
larger than the strength of all components of a common cause
group, and the identical elements in this group will fail at the
same time.

In this paper, each common cause group has only two failure
models. One is the s-independent component failure, and the
other is the failure, of all components in the group at the same
time or within a short time interval that can be neglected. Let
U, (z) represent the UGF of the s-independent failure model of
the common cause group, and ¢, represent the occurrence prob-
ability of CCFs. The UGF of a subsystem with a CCF UF (z) can
be thus described as [48]

UP (2) = (1= ac)Ui(z) + aez®, (23)
where x. represents the output performance of a common cause
group when a CCF occurs.

For a subsystem .S comprised of k; types of components, the
UGF of system S is U, (z) when a CCF is absent. Assume that
the system CCFs are caused by only one kind of external load,
and the limit working stresses of ks components meet h; <
ha < -+ < hyg,. When all components of type i (i = 1,-- -, k)
in the system fail at a probability of C,... ; due to a common
cause, the UGF of system § is expressed as U{".__;(z), which
means that all the components of type 1 to type ¢ fail due to this
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Fig. 3. A flow transmission system.

external load [19], [48]. Thus, the system UGF when consid-
ering CCF can be expressed as

ks ks
US (z) = Uy(z) (1 -3 01> +) UL (2)Ch,i
i=1 i=1
(24)

Finally, the UGF of the entire system with CCFs can be cal-
culated by the subsystems' UGFs with a reasonable combination
operator {} based on the system structure.

V. AN ILLUSTRATIVE EXAMPLE

In this example, we evaluate the reliability of a flow transmis-
sion system comprised of three pipes, as shown in Fig. 3 (the
same system can also be found in [2], [18], [19]). All state per-
formances of the components are precise, and the probability of
each state is listed in Table III.

A. BUGF Method for MSSs With CCF
According to (4) and (6), the BUGF of each component is
defined as
U% (2) = 0.0962° + 0.0952" +0.7952"% 4 0.0142%515,
(25)
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UL (z) = 0.0902° 4+ 0.1952"% + 0.6952% + 0.022%1:52,
(26)
UE () = 0.0352° +0.9582* + 0.0072%*. (27)

Because components A and B are in parallel, the perfor-
mance level of subsystem 1 is equal to the sum of the perfor-
mance of A and B. According to (8), the BUGF of subsystem 1
is expressed as (28) at the bottom of the page.

Subsystems 1 and C are in series; thus, the performance level
of the overall system is equal to the minimum of subsystems 1
and C. Hence, the BUGF of the entire system is given as

US (2) = Qmin (Ui (2), UE (2)) - (29)

From (9) to (12), when the system performance requirement
is w = 1.5, the upper bound Pl{w), and lower bound Bel({w)
of the system reliability can be calculated by the (30) and (31)
at the bottom of the page.

So the system reliability is [RP] = [Bel®?(w), PI® (w)] =
[0.9253,0.9484]. For the system shown in Fig. 3, assume that
components A and B are affected by some common cause
events, and the occurrence probability of CCFs has been
calculated using the method reported in Section III, which is
a. = 0.1151. The BUGF U, (2) of subsystem 1 is known in
the previous discussion. Then, according to (23), the BUGF of
subsystem 1 with CCFs can be calculated as (32) at the bottom
of the page.

The BUGF of the overall system considering CCFs is

UPC (2) = Qn (VS5 (), UE (). G33)

From (11) and (12), the upper bound Pi{w), and lower bound
Bel(w) of the system reliability at w = 1.5 when consid-
ering CCFs can be calculated, and [RP:C] = [Bel®%(w =
1.5), P17 (w = 1.5)] = [0.8187,0.8392].

UsB;,bl (Z) = Qsum (UAB (Z) 7Ug (Z)) =

0.008642° + 0.00855z" + 0.0902721% + 0.0667222+

0.01852522% + 0.2210523 4+ 0.55252523°40.001262%515 + 0.001922%132 4

0.001921%%% +0.0027321%2>2 4 0.01592"%%% + 0.009732%%%7 4 0.00028z% 115223335 (28)
ki k, n
PP (w=15) = 3 - 3 [ i, 13 (27000 — 0,048, (30)
i1=1 ip=1j=1
k1 kn n
Bel® (w — 1'5) — Z e Z H mj;, 1; (zi‘([ghpn,[g]n)gw) — 0.9253 (31)

i1=1  ip=1j=1

UPC(2) = (1 — ) UB,, (2) + aez® = 0.122752° 4+ 0.0075721 + 0.0798821° + 0.059042%+

&

0.016392%% + 0.1956072> 4+ 0.4889292%°+0.0011152"11% + 0.0016992%152+

0.001682"%%% 4 0.0024162"*%%% 4 0.014072"%%° 4+ 0.008612%%%° + 0.000248% 115225335

(32)
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TABLE III
PARAMETERS OF THE FLOW TRANSMISSION SYSTEM
Co;np Xit Ipal Xi2 Ipal X3 Ipil
A 0 [0.096,0.0102] 1  [0.0950.105] 1.5 [0.795,0.805]
B 0  [0.090,0.110] 1.5 [0.1950205] 2  [0.695,0.705]
c — — 0 [0.0350.042] 4  [0.958,0.965]

B. IUGF Method for MSSs With CCF

According to (15), the IUGF equations of the three compo-
nents are given by (34)—(36) at the bottom of the page.

Similarly, the performance level of subsystem 1 is equal to the
sum of A and B, because A and B are in parallel. According to
(16) and (17), the IUGF of subsystem 1 is expressed as (37) at
the bottom of the page.

Subsystem 1 and C' are in series, and the performance level
of the system is equal to the minimum of subsystem 1 and C, so
the IUGF of the overall system is (38) at the bottom of the page.

From (18), the interval-valued reliability of the system [R!] at
w = 1.5 can be calculated as [RI(w = 1.5)] = [0.909, 0.974].

Assume that components 4 and B are affected by a common
cause event with the occurrence probability a, = (.1151. Ac-
cording to (23), the IUGF of subsystem 1 with CCFs can be
calculated as (39) at the bottom of the page.

The TUGF of the entire system considering CCFs is (40) at
the bottom of the page.

From (18), the interval-valued reliability of the system
at w = 1.5 when considering CCFs can be calculated as
[RI:C(w = 1.5)] = [0.805,0.862].
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C. System Reliability Analysis Based on a Global Optimization
Method

In this section, we use a global optimization method to cal-
culate the reliability of the three-component flow transmission
system. The reliability of subsystem 1 is given by R;,p1 =
DA3 + DA2DB3 + Pa2PB2 + paipe2 + pa1pss. The upper and
lower bounds of R, can be expressed as two optimization
propositions. 1) For the upper bound, the objective function is
max R;,p1, and the constraint conditions are pa1 +pas+pas =
L, pg1+pr2+pr3 =1,0.096 < par <0.102,0.095 < pas<
0.105,0.795 < pas < 0.805,0.090< pp1 < 0.110,0.195 <
pp2< 0.205,0.695 < pps < 0.705. 2) For the lower bound,
the objective function is min F;,p1, and the constraint condi-
tions are identical to proposition 1. Using the MATLAB opti-
mization toolbox, the reliability of subsystem 1 is obtained, and
[RE ] = [0.9774,0.9825]. It is obviously that the interval-
valued reliability of component C is [R¢] = [0.958,0.965],
then the system reliability [RS] is shown in (41) at the bottom
of the page.

Considering the CCF in subsystem 1 with probability o, =
0.1151, the system reliability can be calculated by

[RSC] = ([RSun]

The result of the system reliability obtained from the global
optimization algorithm includes all the constraint conditions.
Thus, the truth interval of the system reliability is obtained, and
the result can be used as a reference in comparison with the
other analytical methods' results. Table IV lists the results of
the system reliabilities obtained by using the BUGF method,

—a.) - [Re] = [0.8261,0.8370]. (42)

U’ (2) = [0.096,0.0102] 2° + [0.095,0.105] z* + [0.795,0.805] 25, (34)
U (2) = [0.090,0.110] 2° 4 [0.195,0.205] 2*° + [0.695,0.705] 22, (35)
UL (2) = [0.035,0.042] 2° 4 [0.958,0.965] z* (36)

ULt (2) = Qaum (UL (2) ,UE (2)) = [0.009,0.011] 2° + [0.009,0.012] 2" + [0.090, 0.110] z* ®
+ [0.067,0.072] 2* + [0.019, 0.022] z*-* + [0.221,0.239] 2* + [0.553, 0.568] 23> (37)

Ul (2) = Quin (Ul (2), UL (2)) = [0.042,0.054] 2° + [0.082, 0.011] 2* + [0.087, 0.106] z*-°
+ [0.064,0.069] 2% + [0.018,0.021] 2*® + [0.212,0.231] 2* + [0.529, 0.548] 23> (38)

ULC (2) = (1 — ae) Usun (2) + ce2® = [0.123,0.125] 2° + [0.008,0.010] z* + [0.080,0.097] z*5
+ [0.059,0.064] 2% + [0.016,0.019] 2% + [0.196,0.212] z* + [0.490, 0.502] 23 (39)
ULC (2) = Q(Ugur (2),Uc (2)) = [0.152,0.164] 2° + [0.007,0.010] z* + [0.077,0.094] z'-°

+ [0.057,0.061]22 + [0.016,0.018] 225 + [0.187,0.204] 23 + [0.468, 0.485] 3 (40)
[RS] = [RS,41] - [Re] = [0.9774,0.9825] [0.958, 0.965] = [0.9363,0.9481] (41)
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TABLE 1V
RESULTS COMPARISON OF DIFFERENT METHODS

Methods [R(w=1.5)] [RS(w=1.5)]
BUGF [0.9253, 0.9484] [0.8187,0.8392]
IUGF [0.909, 0.974] [0.805, 0.862]

Global optimization method [0.9363, 0.9481] [0.8261,0.8370]

the IUGF method, and the global optimization method, respec-
tively.

From Table IV, see that [RS] € [RE] C [R!], which means
that the range of system reliability obtained from the IUGF
is greater than that obtained by using the global optimization
method which is regarded as the true value. However, the upper
and lower bounds ofthe reliability obtained by the BUGF method
are much tighter than the results from the IUGF method. Further-
more, the computational procedure of the BUGF method is much
easier, and the complexity mainly depends on the number of focal
elements, which makes the computation complexity acceptable
[2]. Comparing RS with R in Table IV, it is obvious that the
consideration of CCFs can decrease the system reliability greatly.
This is to say, CCF can have remarkable effects on the system
reliability. Therefore, itis necessary to consider this effect of CCF
in the system reliability analysis.

VI. CONCLUSION

In this paper, belief function theory is applied to represent
the uncertainty of components' state probabilities due to their
capabilities in modeling imprecision and deficiency of knowl-
edge. Based on belief function theory, an extended UGF method
is introduced to perform the reliability analysis of MSSs when
the component state probabilities are represented by interval
values. The a-factor model is chosen to analyze CCFs. Consid-
ering the different kinds of impact factors for CCFs, a weighted
impact vector method is employed to quantify the occurrence
probability of CCFs. Finally, the CCF is incorporated into the
BUGEF and IUGF of MSSs using a simple formula. Because the
global optimization algorithm considers all the constraint con-
ditions, its result is regarded as the benchmark to compare and
validate our proposed method with the existing [IUGF method.
Compared with the [IUGF method, the BUGF method avoids the
interval expansion problem, and the overestimation problem, of
the interval UGF. The analysis of the example system shows
that the BUGF method with CCFs can be easily extended and
calculated.

The premise of the methods studied in this work is that the
state performance of components and the corresponding state
probabilities are known, and can be expressed by a non-proba-
bilistic method (e.g., interval-valued method). In a practical en-
gineering system, we usually can get some failure and mainte-
nance data, but we may not be able to get the state probabilities
directly. The determination of state performance measures and
state probabilities is a problem that should be solved in future
work. We will investigate how to estimate component reliability
parameters, such as failure and repair rates, while considering
epistemic uncertainty.
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