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Leveraging Degradation Testing and Condition
Monitoring for Field Reliability Analysis
With Time-Varying Operating Missions

Weiwen Peng, Yan-Feng Li, Yuan-Jian Yang, Jinhua Mi, and Hong-Zhong Huang, Member, IEEE

Abstract—Traditionally, degradation testing and conditionmon-
itoring are used separately to investigate field reliability. Barriers
are naturally formed between these two types of methods due to
condition-discrepancies between lab testing and field monitoring,
as well as time-varyingmissions among product population groups.
In this paper, a joint framework for field reliability analysis is pre-
sented by integrating degradation testing data as well as mission
operating information with condition monitoring observations. A
coherent modeling strategy is introduced for the information in-
tegration by gradually adopting random effects, dynamic covari-
ates, and marker processes into a baseline stochastic degradation
model. In detail, random effects are introduced to cope with the
inherent unit-to-unit variation. Dynamic covariates are adopted to
deal with the external condition heterogeneity. Marker processes
are used to account for the time-varying missions. To facilitate in-
formation integration and reliability analysis, the Bayesianmethod
is used to implement parameter estimation and degradation anal-
ysis. The reliability assessment of products' populations, degrada-
tion prediction, and residual life prediction of individual products
are investigated. Finally, an illustrative example for field degra-
dation analysis of oil debris in a lubrication system of a machine
tool's spindle system is presented. The effectiveness of information
integration and the capability of degradation inference are demon-
strated through this example.

Index Terms—Field reliability, degradation model, random ef-
fect, dynamic covariate, Bayesian method.

ACRONYMS AND ABBREVIATIONS

RUL Remaining useful life
ALT Accelerated life test
ADT Accelerated degradation test
PDF Probability density function
CDF Cumulative distribution function
MCMC Markov chain Monte Carlo
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NOTATION

Degradation process of a product
Degradation observation at time
Degradation increment
Shape function of a gamma process
Rate parameter of a gamma process
PDF of a gamma distribution
Gamma function
Failure threshold of a degradation process
Failure time of a product
PDF of a degradation observation
CDF of a failure time
Reliability function
Probability
Vector of accelerated variables
Vector of usage environment variables
Variable of mission type
Mission duration
Mission intensity
Vector of parameters for a degradation testing model

Model parameters for the shape function of a
Gamma process
Vector of parameters for an ADT model

Model parameters associated with accelerated
variables
Vector of parameters for a field degradation model

Model parameters associated with mission operating
variables
Model parameters associated with usage
environment variables
Prior distribution
Likelihood function
Posterior distribution
Degradation testing data
ADT data
Field observation data
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I. INTRODUCTION

F IELD reliability has long become a critical issue for
both manufacturers and customers of modern products.

For manufacturers, field reliability analysis is often used to
estimate field returns within a given warranty period [1]. A
precise estimation of field reliability is essential for the op-
timization of monetary reserves for warranty claims. In the
long run, manufacturers will benefit from the field reliability
analysis by eliminating potential weaknesses, and by delivering
more competitive products. On the other hand, for customers,
field reliability analysis is generally adopted to estimate the
remaining useful life (RUL) of products [2]. A real-time pre-
diction of RUL is one of the key factors for the optimization of
system operation, and the planning of preventive maintenance.
Under the support of real-time prediction of RUL, customers
will obtain an excellent availability of products with cost-ef-
fective capital goods. Commonly, reliability tests are used by
manufacturers to extrapolate products' reliabilities under field
conditions (i.e. typical working conditions in the service stage
of a product), while condition monitoring is used by customers
to estimate products' RULs under unit-specific conditions. A
gap is naturally formed between these two types of methods,
as well as the corresponding reliability data when they are used
separately.
Unfortunately, neither a precise estimation nor a real-time

prediction can be achieved for the field reliability of complex
products nowadays, if the degradation testing and condition
monitoring are used separately. Take a machine tool as an
example. Due to continually increasing competition in the ma-
chine tool industry, manufacturers of machine tools are under
great pressure to deliver products with high reliability and
availability under limited time. Accelerated life tests (ALT) and
accelerated degradation tests (ADT) are used by manufacturers
to investigate the field reliability of machine tools. However,
due to differences of usage environments and operating mis-
sions between lab tests and field operations, large discrepancies
are often found between the results of lab test inference and
field failure analysis. This difference is large because the
reliability of machine tools is mainly influenced by two groups
of factors: the usage environment related factors such as tem-
perature, moisture, and vibration; and the operating mission
related factors such as work-piece material, cutting speed, and
depth of cut. These factors are often dynamic or time-varying
under field conditions. The misspecification or simplification
of these factors generally leads to a biased inference of field
reliability. On the other hand, for users of machine tools, the
reduction of the total cost of ownership, and the improvement
of availability, have become critical issues to make machine
tools more profitable and productive. Condition monitoring and
RUL prediction are adopted to investigate the field reliability
of machine tools. Because machine tools are complex systems
with multiple interactive components, indicators of system
reliability can sometimes hardly be monitored. The indicators
of system reliability for the machine tools generally include
manufacturing precision, position precision, and oil debris.
The observations of these indicators are often sparse because
continuous monitoring of these indicators is either technically
impractical or economically unaffordable. Most of these indi-
cators are observed and measured discontinuously when the
machine tools are idle, generating fragmented observations of

these indicators. In this situation, results of field reliability es-
timation using these sparse measurements under time-varying
conditions are generally imprecise for further utilization.
Lab test methods for field reliability analysis are impacted

by the uncertainty introduced by time-varying field conditions,
while condition monitoring methods are challenged by the large
variance resulting from fragmented field observations. It would
be useful to combine these methods to investigate their corre-
lations, and to mitigate their limitations. Ye et al. [3] raised the
question about how heterogeneities in operating environments
affect the predictions of field failures and the planning of lab
tests. They introduced a model that linked the lab failure time
distribution and field failure time distribution. Improved field
reliability estimation and optimized ALT planning have been
demonstrated through real life examples. Meeker et al. [4] pre-
sented a method for field reliability prediction based on the ALT
results and field usage information. However, both methods are
limited to field reliability analysis with lifetime data. Consid-
ering field reliability assessment based on degradation analysis,
Liao and Elsayed [5] developed a method to relate ADT exper-
iments to field applications by incorporating stochastic stresses
into ADT models. However, only lab test data and field stress
information can be integrated in their method. Recently, Liao
and Tian [6] introduced a framework to integrate ADT models
and Bayesian updating techniques for the RUL prediction of
individual units under time-varying operating conditions. An
ADT model was used by them to investigate degradation anal-
ysis with time-varying operating conditions. However, the ef-
fects of unit-specific usage environments and time-varying mis-
sions cannot be differentiated under their model. Unfortunately,
in practical engineering, the field reliability of a product can be
affected by many factors. Such as the example of machine tools
described above, different factors contribute differently to field
reliability. As a result, the inherent unit-to-unit variation, the ex-
ternal unit-specific usage environments, and time-varying mis-
sions should be treated separately in field degradation modeling.
The models summarized above are not adequate to handle this
challenging problem. It then motivates the research presented in
this paper.
This paper presents an integrated framework for field reli-

ability analysis with a Bayesian fusion strategy and a model
coupling technique. Under this framework, the strengths of lab
test methods and condition monitoringmethods are synthesized.
Degradation testing data and in situ mission operating infor-
mation are integrated with condition monitoring observations
to facilitate the reliability assessment of products' population
and real-time RUL prediction for individual products. A joint
model for multi-source information fusion is constructed by
coupling the random effects, time-varying covariates, and
marker processes into a degradation model. The effects of
unit-to-unit variation, heterogeneous usage conditions, and
time-varying missions are modeled coherently. The problems
of fragmented degradation observations and simplified in-
fluence factors are handled properly. The remainder of this
paper is organized as follows. Section II presents a literature
review, and some discussion of field reliability analysis. The
models for degradation modeling and information integration
are presented step-by-step in Section III. Parameter estimation,
population reliability estimation, and individual RUL predic-
tion are described in Section IV. In Section V, an illustrative
example is presented to demonstrate the proposed method.
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Finally, Section VI concludes this paper, and highlights several
points for future research.

II. RELATED WORKS

Degradation testing and condition monitoring are two types
of methods for reliability analysis. In the past decades, various
methods have been introduced to carry out field reliability esti-
mation or RUL prediction or both. There are two classical lines
of research that carry out the investigation of field reliability es-
timation and RUL prediction.
One research line follows the gradual development and im-

provement of degradation models. Various degradation models
for different data types have been introduced to handle different
engineering applications. These models include degradation
path models [7], [8], Markovian models [9], [10], and stochastic
process based models [11]–[22]. For the stochastic process
based models, the models based onWiener processes [11]–[15],
gamma processes [16]–[18], and inverse Gaussian processes
[19]–[22] have been studied to facilitate degradation based
reliability analysis. Among the various degradation models,
the paper by Lu and Meeker [7] has been recognized as one
of the pioneering research works. They introduced a general
degradation path model, which was composed by an actual
degradation path function, and a random error term. They also
derived the time-to-failure distribution based on this model,
and introduced the methods for parameter estimation and
reliability assessment. Many papers were published following
their work. Comprehensive reviews about these degradation
models for reliability assessment and RUL prediction were
separately presented by Ye and Xie [23], and Si et al. [2]. In
detail, the Wiener process and its extensions have been widely
studied for degradation modeling. Ye et al. [14] proposed a
degradation model using a random effects Wiener process with
measurement errors. The heterogeneity of degradation rate
among product population, together with the imperfectness of
degradation measurements, were investigated in their model.
In addition, Si et al. [13] proposed a nonlinear drift diffusion
process for degradation modeling and RUL prediction based
on a Wiener process. A time-space transformation was adopted
by them to derive the analytical approximation of the failure
time distribution. Wang et al. [15] proposed a generalized
Wiener process model for degradation modeling. Various
existing Wiener process degradation models were treated as
their model's limiting cases. For the development of gamma
process based degradation models, Lawless and Crowder [17]
incorporated random effects and covariates into the gamma
process for degradation modeling with unit-specific variability
and explanatory variables. A closed form of the time to failure
distribution was derived by them as well. Wang et al. [18]
introduced a change-point gamma and Wiener process for
a degradation process with change points or multi-phases.
Real-time reliability assessment using this change-point degra-
dation model was also studied. In general, stochastic process
degradation models are often used due to the flexibility of
these models for the incorporation of nonlinear degradation,
unit-specific variability, and time-varying covariates. Among
them, the Wiener process degradation models were the most
used, because of their tractability and simplicity. These models
were suitable for non-monotonic degradations. For monotonic
degradations, the gamma process degradation models were

often used. However, the investigation of gamma process
degradation models and their implementations for degradation
analysis considering the inherent unit-to-unit variation, the
external unit-specific usage environments, and time-varying
mission operating heterogeneity have not been well studied yet.
The other line of research focuses on the integration of

multi-source information for field reliability analysis. Padgett
and Tomlinson [12] presented a method for lifetime inference
by integrating degradation measures and failure times obtained
through accelerated tests. Meeker et al. [4] introduced a use-rate
model for field reliability analysis by integrating ALT data
and field usage information. Hong and Meeker [24] further
presented a method for field failure prediction by developing
a cumulative exposure model to integrate dynamic usage in-
formation and failure time data collected in the field. All these
methods were based on lifetime data analysis. Considering
the field reliability analysis through degradation analysis,
Gebraeel et al. [25] proposed a method for RUL prediction by
incorporating information about the reliability characteristics
of a product's population and real-time sensor information of
specific products interested. Gebraeel and Pan [26] further
extended the method to incorporate the real-time status of
environmental conditions. Recently, Chen and Tsui [27] ex-
tended this information integration method to a more specific
degradation situation. Within their work, degradation processes
with change points, unit-specific variance, and correlated
degradation prediction were modeled and investigated under
the Bayesian information integration framework. Meanwhile,
Liao and Tian [6] proposed a Bayesian framework for the
RUL prediction of individual products by further extending the
information integration method as mentioned above. In general,
the information integration method for field reliability analysis
is heading to a more specific and practical situation. Various
types of information have been incorporated to facilitate field
reliability estimation or RUL prediction or both. The inherent
unit-to-unit variation and the time-varying usage environments
are investigated. However, the methods summarized above
were all based on the Wiener process degradation model due
to its simplicity and tractability. Few works focused on other
types of degradation models; a rare exception was the work
presented by Wang et al. [28]. They proposed a Bayesian eval-
uation method by integrating ADT test data and field failure
data, where a calibrating factor was incorporated to link the
model for ADT and failure observations. Both Wiener process
and gamma process degradation models were studied in their
work. However, only lab test information and field observation
were incorporated in their work. Information of field conditions
can hardly be incorporated in their model, which makes the
application of this method limited, especially for the situation
where field reliability is affected greatly by field conditions
and operating missions such as the situation of machine tools
introduced above. Accordingly, the integration method for field
reliability analysis by incorporating degradation tests, condition
monitoring, and mission operating information deserve further
study.
Based on the literature review presented above, the contri-

butions of the proposed method lie in the following aspects.
From the line of research about degradation modeling for field
reliability analysis, other than introducing a specific model
solely for degradation analysis with time varying operating
missions, a group of degradation models raising from baseline
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degradation, to lab degradation, and finally into field degrada-
tion, are constructed. A link between degradation test models
and condition monitoring models is presented. It is imple-
mented by gradually incorporating random effects, dynamic
covariates, and marker processes into a baseline degradation
model. The unit-to-unit variation and the effects of usage
conditions and time-varying missions are modeled coherently.
Moreover, a gamma process degradation model is investigated,
and mathematically tractable conditional distributions for both
RUL prediction and degradation inference are obtained. From
the line of information integration for field reliability analysis,
a coherent method for integrating degradation test, condition
monitoring, and mission operating information, is presented.
Together with the proposed model, the integration method
is extended to the gamma process degradation model, which
is suitable for monotonic degradation modeling. Moreover,
information about usage environments and operation missions
is treated separately in the proposed model. In detail, the
information about usage environments is integrated through
dynamic covariates, and the information about operation mis-
sions is incorporated through marker processes. It can facilitate
the identification of the major impact factor to the degradation
process. Especially for complex engineering systems, such as
the machine tools introduced above, different factors affect the
degradation process differently. It can also deliver a deeper
understanding of the connection between lab tests and field
observations, which in turn improve field reliability assess-
ment, and RUL prediction for manufacturers, and customers
respectively.

III. MODELS

To relate lab test data to condition monitoring data, the effects
of unit-to-unit variability, usage conditions, and time-varying
missions should be modeled coherently. In this section, the
model proposed in this paper is constructed by gradually
integrating random effects, dynamic covariates, and marker
processes into a baseline degradation model.

A. Baseline Degradation Model

In this paper, we investigate the degradation process with
continuous state and continuous time. For a product with
degradation process , given the degradation
threshold , the failure time of this product is defined as

. We consider the degradation pro-
cesses with -independent non-negative increments observed
for many engineering systems today [23]. For illustration of the
proposed method, the gamma process is used as the baseline
degradation process model. A basic gamma process model is
then defined for the degradation process with .
It has the following properties.
a) The degradation increments

are -independent.

b) The degradation increment follows a gamma dis-
tribution , where is a mono-
tone increasing function with .

The probability density function (PDF) of a gamma distribu-
tion for a random variable with mean

and variance is

(1)

where is the shape parameter, and is the inverse scale
parameter.
The degradation process is described as

. Its degradation increment is given as
with . The PDF of the

degradation observation is obtained as

(2)

Because the failure time of this degradation process is de-
fined as , the cumulative distribu-
tion function (CDF) of the failure time is obtained as

(3)

where , which is a lower
incomplete gamma function.

B. Degradation Model for Testing Data
Degradation tests or ADT are generally used to obtain lab test

data, and to assess system reliability by mimicking normal field
conditions and nominal operating missions. Commonly, these
conditions and missions are well-controlled. Due to the uncer-
tainty introduced in the design process or manufacturing process
or both, there is unit-to-unit variation among products, which
leads to the dispersion of degradation curves. It is common to
introduce a unit-specific random effect into the baseline degra-
dation model to account for the unit-to-unit variation. Two sce-
narios are considered in this paper: the normal degradation tests,
and the accelerated degradation tests.
For the scenario of normal degradation tests, a random effect

is incorporated in the basic degradation model by assuming that
the inverse scale parameter follows a gamma distribution as in
Lawless and Crowder [17], and Tsai et al. [29]. In this way, both
the variance among the product's population and the variance
within a product's degradation curve can be well modelled. That
is, with . Then the PDF of
the degradation observation is given as (4) at the bottom of the
page.
It can be derived that follows an -distribu-

tion with parameters , and [17], i.e.,
. Accordingly, the reliability function is ob-

tained as shown in (5) at the bottom of the next page, where

(4)
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is the CDF of a -distribution with
parameters and

is an incomplete beta func-
tion, and is a beta
function.
As for the scenario of ADT, the baseline degradation

model is extended to an ADT model
as , where is a vector of accel-
erated variables. The accelerated variables are the stress
factors used in the ADT, such as temperature-cycle, use-rate,
voltage-stress, and so on [30]. The function is obtained
by incorporating the effects of accelerated variables into the
shape function . The effects of accelerated variables are
generally formulated by a parametric regression function, a
Cox-proportional hazards model, or some other acceleration
functions such as a power-law model, an Arrhenius reaction
rate model, or an inverse-log model, to name a few. The
random effect is incorporated in this ADT degradation model
by assuming that the inverse scale parameter follows a gamma
distribution. Similarly, the conditional PDF of the degradation
observation and the conditional reliability function are obtained
as shown in (6) and (7) at the bottom of the page.

C. Degradation Model for Field Observations

A degradation model for field observations is a model to de-
scribe the monitored degradation observations by considering
the effects of usage conditions and time-varying missions. It is
aimed to integrate condition monitoring data and mission op-
erating information. Based on the engineering imperative pre-
sented by the case of machine tools introduced above, the in-
formation of field observations is categorized into three parts:

the monitored degradation observations, the usage environment
information, and the operating mission information. This cate-
gorization is aimed to model the effects of usage environments
and operating mission separately on the observed degradation.
Because the usage environments are generally static or well-or-
dered situations, they are treated as non-stochastic covariates
in this paper. Because the operating missions are generally un-
predictable, and affected by many factors, they are modeled by
marker processes in this paper.
The variables of usage environments are generally mea-

surements of conditions that affect the products' reliability,
such as moisture, vibration, pressure, and so on [31]. The
effects of these variables are introduced into the degrada-
tion model through the modification of the rate parameter

[28]. The degradation process model is then given as
, where is formulated

following the idea of ADT models, and is the accel-
erated variable in the field conditions if it is observed. As a
result, the conditional PDF of the degradation observation and
the conditional reliability function are obtained as shown in (8)
and (9) at the bottom of the page.
For the incorporation of mission operating information,

marker processes are used in this paper. By marker processes,
we mean that the missions are characterized by various indexes,
and these indexes are used as markers to differentiate different
missions. In detail, the missions' type, duration, and intensity
are taken into consideration. The information about these in-
dexes is recorded and incorporated into the degradation model.
The specification of mission operating information is originated
from the fact that modern products and engineering systems
can implement various missions. Each mission is characterized
by a specific duration of time, and a particular stress intensity.

(5)

(6)

(7)

(8)

(9)
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Different degradation levels or rates may be observed in dif-
ferent missions. Suppose there are types of missions that
can be carried out by a product. The marker process of mission
type is a serial of numbers within the integers . It acts
as a marker to differentiate different mission types. For a spe-
cific mission with , the marker processes of
mission duration and mission intensity are serials
of real numbers in their respective intervals. The processes

and are used to describe the detailed information of
mission operations experienced by the product within a series
of missions. The degradation characteristics of a product are
then differentiated mission by mission. By taking account of
the marker processes, the degradation model of the product is
given as a model of degradation increment within a mission as
shown in (10) at the bottom of the page, where

is the specific time that the mission starts, and is
the degradation observation at time point .
The key point for degradation modeling with mission oper-

ating information is to modify the shape function by incorpo-
rating the effect of mission intensity into the shape function
as or if the accelerated variables
are also presented in the field observations. Meanwhile, because
the shape function is a function of both the operation time and
the mission type , the characteristic of -independent degra-
dation increments is only valid within the time interval of a spe-
cific mission . The degradation observations are accumulated
by the degradation increments generated in all completed mis-
sions. In other word, it is impossible to derive a conditional
PDF for the degradation observation at any time point as (4),
(6), and (8). The only way to describe the degradation observa-
tion is through the degradation increments conditionally on the
available mission operating information of a specificmission .
As a result, the conditional PDF of the degradation observation,
and the conditional reliability of the product are obtained for a
mission as shown in (11) and (12) at the bottom of the page,
where .

IV. PARAMETER ESTIMATION, AND RELIABILITY INFERENCE

The models for degradation tests, condition monitoring, and
mission operating information are presented above. A coherent
framework is then constructed to integrate the information for
field reliability inference in this section. The Bayesian method
is adopted to implement parameter estimation and reliability in-
ference. Four aspects are highlighted in this section: 1) deriva-
tion of the prior distribution, 2) formulization of the likelihood
function, 3) construction of the joint posterior distribution, and
4) calculating or updating the field reliability inference.

A. Prior Distribution

The prior distribution is a representation of quantified prior
information. Based on the degradation model presented in (4),
(6), and (10), all model parameters are summarized as shown in
(13) at the bottom of the page.
Due to the models for the degradation test, condition moni-

toring, and mission operating information being derived hierar-
chically, their model parameters are coupled together as shown
in (13), where is included in , and is further
included in . This approach can facilitate the combina-
tion of multiple-source information, and the updating of prior
distributions. Two types of prior distributions are commonly
adopted. The first type is the prior distributions derived from
subjective prior information. The second type is the prior distri-
butions transformed from analysis results of a previous data set.
Generally, two kinds of advantages are achieved for field re-

liability analysis by using these two types of prior distributions.
For the prior distributions derived from subjective information,
the incorporation of prior information can improve the preci-
sion of field reliability analysis, and further add value to the
corresponding decision making. This kind of prior information
is generally in the form of expert judgment which contains the
engineer's experience and expertise. Wang and Zhang [32] have
demonstrated the advantage of incorporating subjective expert

(10)

(11)

(12)

(13)
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judgment for residual life prediction. For specific techniques
about the elicitation of experts' probability, and the derivation
of the prior distribution, please refer to the work by O'Hagan
et al. [33].
For the prior distributions transformed from the analysis re-

sults of the previous data set, a continual updating strategy can
be formed for field reliability by making the posterior distribu-
tions of model parameters for the previous observed data as the
prior distributions of model parameters for the present observed
data. This kind of prior information is commonly in the form of
a probability density function which contains all the information
aggregated to the present time. Various works for field reliability
analysis have utilized this advantage of prior distributions, in-
cluding [5], [26], [28], and [34]. In this paper, the continual up-
dating of model parameters is employed to gradually integrate
degradation test data, ADT data, and condition monitoring data
with mission operating information. A further demonstration of
the prior distribution for the proposed model is presented later
in an illustrative example.

B. Likelihood Function

A likelihood function is utilized to describe the information
contained in degradation testing data, condition monitoring
data, and mission operating data. It is constructed based on
the PDF functions of degradation observations or degradation
increments using the models derived above. Due to these
models being derived hierarchically for different data types, the
likelihood functions for these data are presented progressively
in the following part for information integration.
Given degradation testing data , suppose units

are tested, and the unit is observed at different
time points, where . Due to the degra-
dation increment of degradation testing being modeled as

with , the likelihood
function for the degradation testing data is given as (14)
at the bottom of the page, where
and includes all the random effect
parameters for the units.
Given the ADT data , suppose units are tested

at different levels of accelerated stresses. Under the
stress, there are units under test, and the unit is ob-
served at different time points, where

, and . Based on the
degradation model for ADT data, which is given as

with , the likelihood function
for the ADT data is given as (15) at the bottom of the
page, where , and
includes all the random effect parameters for the units.
Given the condition monitoring data and mission operating

information , suppose that units are monitored.
For the unit, there are degradation observations
obtained from missions. The mission type , the
mission duration , and the mission intensity are
recorded. The usage environments and accelerated stresses

are also monitored. Based on the degradation
increment for the field observations presented in (10), the
likelihood function for the condition monitoring data
with the mission operating information is given as (16)
at the bottom of the page, where

.
Based on the likelihood functions derived above, the joint

likelihood function for degradation testing, condition moni-
toring, and mission operating information is obtained as (17) at
the bottom of the page.
From the joint likelihood function, we can find that all the in-

formation contained in the observed data is concentrated on the

(14)

(15)

(16)

(17)
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parameters of the field degradation model, i.e., . A gradual
integrating of information from degradation testing data, ADT
data, and condition monitoring data with mission operating in-
formation is implemented through the coupling of model pa-
rameters and their likelihood functions.

C. Posterior Distribution
By combing prior distributions of model parameters with the

likelihood function of reliability data through Bayes' theorem,
the joint posterior distribution of model parameters is obtained.
This joint posterior distribution is a description of the integrated
results of degradation testing, condition monitoring, and mis-
sion operating information. Field reliability is then implemented
based on this joint posterior distribution and the corresponding
degradation models.
Based on the prior distribution of parameters, and the likeli-

hood function presented in (17), the joint posterior distribution
is obtained as (18) at the bottom of the page.
There is often no analytical solution to (18). The Markov

chain Monte Carlo (MCMC) method is generally used to
generate posterior samples of model parameters from this joint
posterior distribution. These posterior samples are then used to
implement reliability inference and degradation prediction. In
this paper, the software WinBUGS [35] is used to facilitate the
implementation of MCMC. For specific information about the
modeling and calculation through WinBUGS, please refer to
the works [36], [37].

D. Reliability Inference
When the parameters of degradation models introduced

above are estimated, it is of interest to investigate the field
reliability of a product through the degradation models. There
are generally two kinds of field reliability that manufacturers
and customers are concerned about. The first is the overall field
reliability of the product population, which is related to the de-
cision-making of product warranty. This type of field reliability
is of particular importance for manufacturers of a product. The
other is the particular field reliability of an individual product,
which is related to the planning and optimization of preventive
maintenance. This type of field reliability is of critical signif-
icance for users of a product. In the following part, both the
field reliability of a product population, and the degradation

prediction and residual life prediction of individual products
are presented.
For the field reliability of a product population, if all the prod-

ucts are used under a specific mission type with a mission
intensity , the conditional field reliability is given as (19)
at the bottom of the page.
The mission types and the mission intensity that a

product experienced in the field are generally hard to predict
precisely. This difficulty is because the arrival of different mis-
sion types is influenced by various uncertain factors. In addi-
tion, the sequence of these mission types and their durations are
generally unpredictable. As a result, (19) is generally used to es-
timate the field reliability of product population in some typical
mission types and mission intensity.
Because (19) cannot be solved analytically, simulation

based integration is adopted to facilitate the calculation. It is
implemented by substituting the posterior samples of model
parameters generated from
through the MCMC method into the conditional reliability
function . By doing so, each
posterior sample will generate an estimation of field
reliability. A group of estimations of field reliability are then
obtained using the posterior samples of model parameters.
Statistics of these estimations form the estimations of the field
reliability of the product population, which include kernel
distribution, mean, variance, interval estimation, and so on.
For degradation prediction of the product under field

conditions, the degradation prediction for a coming mission
is given as follows, when the mission type , mission du-
ration , and mission intensity for the coming
mission are known. See (20) at the bottom of the next page,
where is
the PDF of degradation at the time point

, and
.

Similarly, the field reliability of the product during
the mission time of the coming mission is given as fol-
lows, when the mission type , mission duration ,
and mission intensity for the coming mission are
known. See (21) at the bottom of the next page, where

is the reliability
of the product during the mission duration of mission with

(18)

(19)
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, and which is a
lower incomplete gamma function.
Both (20) and (21) are indices derived for the coming mis-

sion of the product, which are derived on the condition that
the mission type , mission duration , and mission inten-
sity of the coming mission are known. Due to the unpre-
dictability of the mission sequence that the product will endure
in the remaining life, it is impractical to derive an estimation of
RUL of this product. However, a preventive maintenance and an
operation planning still can be made based on the prediction of
the degradation and reliability of the product in the coming mis-
sion. This ability exists because there is a time interval between
the present observation time point and the predicted observa-
tion time point . A decision can be drawn based on the com-
parison of the degradation level between the predicted degrada-
tion and the degradation threshold. It is of practical meaning for
the management of the engineering systems or products that can
fulfill multiple missions, yet the information of these missions
is only available for the coming one or two missions. The field
analysis of machine tools introduced in the introduction session
is a good example. A further demonstration is also presented in
the later example section.
The calculations of (20) and (21) are implemented

through the incorporation of the simulation based integra-
tion, which are the same as the one used for (19). The
posterior samples of model parameters generated from

using the MCMC
method are substituted into the conditional PDF function

, and the conditional re-
liability function . Both of these
two functions have analytical expressions as presented in (20),
and (21). By doing so, a group of calculated samples of the
conditional PDF and conditional reliability are then obtained
using the posterior samples of model parameters. Degradation
prediction and reliability inference for individual units during
the coming mission are then simulated and summarized based
on these calculated samples.

V. EXAMPLES

Take the spindle system of a machine tool as an example. The
spindle system transmits the required energy, and rotates the tool
(grinding, milling and drilling) precisely to implement high-pre-
cision machining. It exerts a great effect on the material removal
rate and the final quality of machined parts. The spindle system
is expected to possess high reliability and availability. Degra-
dation testing and condition monitoring are implemented on the
spindle system. Themeasurement and monitoring of the amount
of debris in the lubricating oil is a possible way to monitor the
deterioration of bearings and gears in the spindle system. In this
section, degradation analysis of oil debris is used to illustrate
the proposed method.
To avoid proprietary issues, degradation data are simulated

using the estimated parameters from the original degradation
data, and the units of values are omitted. Largely, however, the
characteristics of the degradation observations and the applica-
tion of the proposed methods are the same as with the original
data.

A. Degradation Data

The degradation data of oil debris include the testing data
and field observations. In detail, five spindle systems are tested
by the manufacturers during the design and manufacturing pro-
cesses. Testing data are recorded from the degradation tests,
which include general degradation test data and ADT data. The
degradation data collected by manufacturers are presented in
Fig. 1. These tests are designed and implemented by profes-
sional reliability test engineers. We are not able to discuss more
detail about the reliability tests. However, the accelerated degra-
dationmodel is presented in the following part. The specific data
for the normal degradation test, and ADT tests are respectively
given in Tables I, and II.
These five systems are also monitored by the users during the

usage processes. Field observations are obtained from condition

(20)

(21)
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TABLE I
DEGRADATION DATA OBTAINED FROM NORMAL DEGRADATION TEST

Fig. 1. Normal degradation test data, and ADT data.

monitoring and mission tracking, which include field degrada-
tion observations, and mission operating records. Degradation
data and operating information collected by users are presented
in Fig. 2.
The degradation observations are observed during the idle

time of the machine tools when they finish specific missions.
As presented in Fig. 2, there are five types of missions that

Fig. 2. Field degradation data, and mission type information.

the machine tools fulfilled. The mission types, mission inten-
sity, and mission durations were recorded by users of machine
tools based on the operation sheets of these missions. In addi-
tion, the accelerated variables experienced by the machine tools
under typical use conditions in the factories, and the environ-
ment information, were also recorded. The effect of these vari-
ables and the specific model are presented in the following part.
The specific data for mission operating information, condition
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TABLE II
ADT DATA WITH ACCELERATED VARIABLE PRESENTED IN THE BRACKET FOR EACH SAMPLE

Fig. 3. Prediction of field degradations at three leave-one-out cross-validation
points.

monitoring degradation data, and the values of accelerated vari-
ables and environment variables for machine tools are given in
Table III.

B. Degradation Models
Based on the degradation models introduced in Section III,

the models for degradation testing data and the model for con-
dition monitoring information are chosen. These models are

Fig. 4. Boxplot of relative errors of degradation predictions.

chosen by considering both the characteristic of degradation
data presented in Fig. 1 and the subjective information of ex-
perts in that domain.
A gamma process with random effects is used as the degrada-

tionmodel for normal degradation tests. As the oil debris is often
characterized as an increasing degradation rate, a power-law
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TABLE III
DEGRADATION OBSERVATION AND MISSION OPERATING INFORMATION

function is used as the shape function in the degradation model
as follows.

(22)
where .
The degradation model for ADT data is formulated by in-

corporating the accelerated variables into the shape function.
For the ADT of the oil debris, only one accelerated variable
is used, and a linear accelerated model is adopted in the de-
sign of ADT tests. Here, we incorporate this accelerated model
into the normal degradation test model. The model for ADT is

then given as (23) at the bottom of the page, where
, and is the accelerated variable.

The degradation model for condition monitoring data
and mission operating information are formulated by sepa-
rately incorporating covariates into the shape function and
scale parameters of the ADT model presented above. It is
given as shown in (24) at the bottom of the page, where

is the accelerated vari-
able observed under typical use conditions in the factories,

is a nominal mission intensity designed for the
machine tool, and is the environment variable.
As discussed in Section III, the effect of the mission in-

tensity is considered by modifying the shape function
into . It is implemented by

introducing an exponential function

(23)

(24)



PENG et al.: LEVERAGING DEGRADATION TESTING AND CONDITION MONITORING 1379

TABLE IV
STATISTICAL SUMMARY OF POSTERIOR SAMPLES OF MODEL PARAMETERS

into the shape function to directly affect the lifetime . The
effect of the mission intensity is presented through its
contrast with a nominal mission intensity designed for
the machine tool. In addition, the environment variable is
considered by modifying the scale parameter into ,
which aims to adjust the variance of the degradation model.

C. Parameter Estimation and Reliability Inference
Following the procedure presented in Section IV, prior dis-

tributions for model parameters are derived. In this ex-
ample, non-informative prior distributions are used for these
parameters. In this way, the results of estimation and inference
generated by the proposed method are mainly based on the inte-
gration of information presented above. In detail, according to
the principle of indifference [38], -uniform distributions with
large intervals are assigned for the model parameters as prior
distributions:

, and
. denotes a -uniform distribution with

an interval . The intervals of these prior distributions are
chosen large enough to make these priors act as non-informative
priors in the Bayesian analysis.
By combining the degradation models presented in

(22), (23), and (24) with the general likelihood functions
presented in Section IV, the joint likelihood function
for the degradation data given above is obtained shown
in (25) at the bottom of the page, where

are the data sets given above; and

, and

.
According to Bayes' theorem, the posterior distribution for

model parameters is obtained by combining the prior distribu-
tions given above with the joint likelihood function given in
(25). It is given as (26) at the bottom of the page.

(25)

(26)
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Fig. 5. Estimations of population reliability with different mission types.

Based on the joint posterior distribution, posterior samples of
model parameters are simulated by implementing the MCMC
through WinBUGS. In this example, 20,000 posterior samples
are generated. A statistical summary of these posterior samples
is presented in Table IV.
To verify the effectiveness of the proposed method, a leave-

one-out cross-validation is implemented. We retain three latest
degradation points of the field observations given in Table III,
and carry out parameter estimation using the remaining data.
The posterior samples generated by these data sets are then used
to predict the degradations at these three leave-one-out time
points. A pictorial description of the predicted degradations and
the observed degradations at the three leave-one-out time points
is presented in Fig. 3. The relative errors of these degradation
predictions for each sample are also obtained as presented in
Fig. 4. Both boxplots of the degradation predictions and the rel-
ative errors demonstrate high precision of the proposed method
for field degradation prediction. We then proceed to the reli-
ability estimation, degradation inference, and RUL prediction
using the results of information integration.
By utilizing the simulation based method presented in

Section IV, the reliability assessment of the machine tool's
population is obtained based on the posterior samples of model
parameters from (26). The degradation prediction, and the
RUL prediction for individual machine tools are obtained as
well based on these posterior samples of model parameters.
For the manufacturers of machine tools, the conditional field
reliability of the product population is calculated by assuming
that the products are working under a specific mission type
with a mission intensity . Fig. 5 presents the estimations
of population reliability with different mission types. The

corresponding mission intensity are 1800, 2200, 2600, 3000,
and 3400 for mission types 1, 2, 3, 4, and 5.
From the estimations of population reliability, we can find

out that the field reliability of machine tools can be greatly af-
fected by the mission type and mission intensity fulfilled by the
machine tools. A mission type with a large mission intensity,
such as the mission type 5 with mission intensity 3400 shown
in Fig. 5, generally leads to poor field reliability of the machine
tool. Manufacturers can utilize these estimation results to fa-
cilitate decision making for the machine tools. A more specific
estimation of field population reliability can be obtained based
on the field degradation and posterior samples derived above, if
more information about the process of mission types that a ma-
chine tool will experience is available.
For the user of a machine tool, if missions are assigned for

this machine tool, degradation prediction can be obtained for
the time points when the missions are completed. In addition,
a prediction of RUL for individual machine tools under a spe-
cific mission type and mission intensity can be obtained as well.
Fig. 6 presents degradation predictions for a machine tool under
different mission types. This machine tool is the sample 1 pre-
sented in Fig. 2. The predictions of RUL under different mission
types are also presented in Fig. 6.
The degradation predictions and the RULs vary with the mis-

sion types that the machine tool endured. The RULs changed
from 110 to 23 with the mission type changing from mission
type 1 to mission type 5. As a result, different strategies about
operation management and preventive maintenance are going
to be implemented on the machine tool if different mission
types are carried out by the machine tool. In addition, based
on the degradation model and the inference procedure de-
scribed above, more specific predictions of field reliability for
individual machine tools can be implemented if more specific
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Fig. 6. Prediction of degradation and RUL of a machine tool with different mission types.

information about their respective missions in the future is
available.

VI. CONCLUSION
This paper investigates field reliability analysis by lever-

aging degradation testing and condition monitoring data.
Time-varying mission operating information is incorporated
to facilitate the degradation analysis with degradation testing
data and condition monitoring observations. The models for
normal degradation testing data, ADT data, and degradation
observations are derived progressively by separately incor-
porating random effects, dynamic covariates, and marker
processes, into a baseline degradation model. The effects
of inherent unit-to-unit variation, external condition hetero-
geneity, and time-varying missions are modelled coherently
with these degradation models. Estimations of population
reliability, and predictions of individual degradations and
RULs, are implemented using a Bayesian information fusion
strategy. Degradation analysis of machine tools' spindle sys-
tems is used to demonstrate the proposed method, where the
degradations of oil debris in the lubrication systems of the
machine tools' spindle systems are used. Within this example,
the degradation inference capability of the proposed method
is verified through leave-one-out cross-validation. In addition,
by studying the degradation under different mission types, the
effectiveness of incorporating mission operating information is
demonstrated for both the reliability estimation of product pop-
ulation and the degradation prediction of individual products.
Time-varying missions can exert significant influence in the
degradation of the product under field conditions. Accordingly,
the decision-making concerning product warranty for product
manufacturers, and strategy-designing about preventive main-
tenance for system users, should consider the effect of time
varying missions.

There are several points that deserve further investigation.
One is the studying of a real-time estimation method for the pro-
posedmodels and the integration ofmulti-source information. A
study of degradation test planning and ADT planning by consid-
ering the effect of field condition heterogeneity and time-varying
missions is also of interest for further investigation.
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