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Bayesian Reliability and Performance
Assessment for Multi-State Systems
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Abstract—This paper develops a Bayesian framework to assess
the reliability and performance of multi-state systems (MSSs).
An MSS consists of multiple multi-state components of which
the degradation follows a Markov process. Due to the lack of
sufficient data, and only vague knowledge from experts, the
transition intensities of multi-state components between any pair
of states and the state probabilities cannot be precisely estimated.
The proposed Bayesian method can merge prior knowledge from
experts' judgments with continuous and discontinuous inspection
data to obtain posterior distributions of transition intensities.
A simulation method embedded with the universal generating
function (UGF) is developed to estimate the posterior state prob-
abilities, the reliability, and the performance of the entire MSS.
Two numerical experiments are presented to demonstrate the
effectiveness of the proposed method.
Index Terms—Bayesian estimation, continuous inspection data,

discontinuous inspection data, multi-state component, multi-state
system, reliability assessment.

Abbreviations:

MSS Multi-State System
UGF Universal Generating Function
MCMC Markov Chain Monte Carlo

Notation:

Performance capacity of component at its
state .
Probability of component being at state at
time instant if it is initially at state at .
State probability of a system staying at state
at time .
System performance capacity at state .
Transition intensity of component from its
state to state .
Likelihood function of transition intensities
.

Observed number of transitions from state to
state via continuous inspection.
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Total observed time of all the samples of
a component sojourning at state with
continuous inspection.
Total observed number of transitions from
state via continuous inspection.
Observed number of all the samples of a
component being inspected at state in the
last inspection and at state after inspection
interval .

I. INTRODUCTION

A S more engineered systems are evolving to larger scale,
more complexity, and higher precision, it is frequently

observed that systems and components may manifest multiple
states ranging from perfect, through deterioration, to complete
failure [1]. Multi-state system (MSS) reliability theory, which is
capable of characterizing the deterioration process of aging sys-
tems by introducing more than one intermediate state between
perfectly working and completely failed states, has been recog-
nized as a more effective tool to appropriately reveal hidden sto-
chastic behaviors of advanced engineering systems [2]. Many
engineering systems can be treated as an MSS in practice, such
as manufacturing systems [3], power generating systems [4],
communication systems [5], and municipal infrastructure [6].
In these types of multi-state systems, both the system and its
components can perform their intended tasks with more than
two discrete states distinguished by levels of efficiency or per-
formance capacity. Various methods, like the extended decision
diagram-based method [7], the stochastic process [8], the uni-
versal generating function (UGF) [9], the recursive algorithm
[10], and simulation-based methods [5], have been proposed to
assess the reliability and performance of MSSs.
It is worth mentioning that nearly all the reported studies on

MSS reliability assessment are based on two critical assump-
tions: 1) the transition intensities between any pair of states are
known, and 2) the state probabilistic distributions can be esti-
mated precisely from sampling data. The emphasis of existing
works lies in modeling MSSs that possess complicated deteri-
orating behaviors, improving computational efficiency for reli-
ability evaluation, and optimizing the system configuration to
achieve better reliability performance [1], [2]. In fact, estima-
tion or inference of model parameters is a preceding task before
reliability evaluation and optimization can be carried out. How-
ever, less attention has been paid to parameter estimation in the
context of MSSs. Lisnianski et al. [14] introduce the point esti-
mation of transition intensities of a multi-state power generating
unit by defining a special Markov chain embedded in the ob-
served capacity process. However, due to the lack of sufficient
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data, accurate estimation of transition intensities and state distri-
butions turns out to be a challenging task [11], [12]. The afore-
mentioned method can only yield the point estimates of transi-
tion intensities, yet is unable to quantify the uncertainty or com-
pute the confidence bounds of the estimates. Such a limitation
may lead to a large estimation error if the results are overesti-
mated or underestimated, especially in the case of sparse or lim-
ited data. Most recently, fuzzy numbers [11],[12], [15], interval
values [16], and belief functions [17] are adopted to quantify the
uncertainty of state probabilities and transition intensities when
precise knowledge or sufficient data are not available. Though
these methods can provide confidence bounds to measure the
uncertainty of estimated parameter values, such as state prob-
abilities and transition intensities, such uncertainty cannot be
sequentially characterized and reduced by collecting more data.
From a statistical point of view, the estimation should asymptot-
ically approach the true values, though unknown, as the amount
of observations increases.
To address the aforementioned issue, this paper presents a

Bayesian framework to assess the reliability and performance
of multi-state systems. The Bayesian approach, which treats
the parameter estimate as a random variable, has been used in
different engineering fields where data can be progressively
accumulated over time [18]. This method enables reliability en-
gineers to systematically synthesize the subjective information
from experts and intuitive judgments with actual observed data,
thereby obtaining a balanced estimate. That is, the estimate
is updated as more information and data become available
[19]. As a key advantage over other methods (e.g., fuzzy sets,
interval values), the Bayesian approach is able to quantify the
uncertainty arising from limited data. Many practical problems
under the context of binary-state systems have been success-
fully solved under classic Bayesian reliability analysis [20],
[21]. Bayesian reliability assessment for multi-state compo-
nents and systems is, however, rarely reported in literature,
which motivates the development of this work.
In this paper, we propose a Bayesian framework for reliability

and performance assessment of multi-state systems. The likeli-
hood functions in Bayesian parameter estimation of multi-state
components are derived in two common cases, namely compo-
nents are inspected continuously, and discontinuously. The pos-
terior state probability for the system is computed via Monte
Carlo simulation coupled with the UGF technique. The applica-
tion of the proposed method is demonstrated via two numerical
examples.
The remainder of the paper is organized as follows. The

continuous-time Markov model which characterizes deterio-
ration processes of multi-state components is briefly reviewed
in Section II. The Bayesian estimation of transition intensities
of multi-state components with continuous inspection data and
discontinuous inspection data are respectively developed in
Section III. Reliability function, state probabilities, and many
other quantities of interests of multi-state systems are assessed
based on the posterior distributions of transition intensities of
multi-state components in Section IV. In Section V, two nu-
merical examples are exemplified to illustrate the effectiveness
and accuracy of the proposed method, and it is followed by a
brief conclusion and some remarks in Section VI.

Fig. 1. The state-space diagram for multi-state component without any repair.

II. MARKOV MODEL FOR EVALUATING STATE
PROBABILITIES OF MULTI-STATE COMPONENTS

To analyze the behavior of a MSS, one has to start with
characterizing the stochastic behavior of its components. Any
multi-state component in an MSS has different states each
corresponding to a distinct performance capacity which is
represented by the set , where

is the performance capacity of component at state ,
. The performance capacity of compo-

nent at any instant is a random quantity, taking values
from , i.e., . Therefore, during a time interval

, the performance capacity of component is defined as a
stochastic process. The probabilities associated with different
states of component at time instant given the condition that
the component degrades initially from state are de-
noted by the set ,
where represents the probability that .
The state probabilities satisfy the condition
because the components' states at any time instant constitute
a complete set of mutually exclusive events.
With a memoryless assumption that the probability of a fu-

ture state of component is s-independent of its previous state,
the stochastic behavior of multi-state components can be char-
acterized by a Markov process. In our study, we investigate the
case where the deterioration of multi-state components follows
a homogenous continuous-time Markov process. Many engi-
neering systems possess a multi-state nature, including manu-
facturing systems [2], power systems [4], and flow transmis-
sion systems [22]. These types of systems can be character-
ized by a homogenous continuous-timeMarkovmodel. The pro-
posed method can be further extended to more general cases
such as non-homogenous continuous-time Markov models and
semi-Markov models.
An example of the state-space diagram of multi-state compo-

nent without considering repair activities is depicted in Fig. 1.
The corresponding Kolmogorov differential equations for com-
ponent can be expressed as

(1)

where the initial conditions are , and
. By solving the differential equations, one can get the

state probability as a function of time [2].
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Fig. 2. Observation data from continuous and discontinuous inspections. (a) Data collected for sample #10 under continuous inspection. (b) Data collected for
sample #10 under discontinuous inspection.

TABLE I
CONTINUOUS INSPECTION DATA OF 14 SAMPLES

III. BAYESIAN ESTIMATION OF TRANSITION
INTENSITIES OF MULTI-STATE COMPONENTS

Based on the Bayes' theorem, the posterior distribution of
unknown parameters (i.e., transition intensities) can be es-
timated by

(2)

where is the prior distribution of unknown parame-
ters given by experts' subjective judgments, and

is the posterior distribution of after combining the ob-
served data.
To conduct the Bayesian estimation of transition intensities

of multi-state components, one has to first construct a likelihood
function to estimate the unknown parameter (i.e., transition
intensities) based on observed data. Together with prior infor-
mation of unknown parameters, the posterior distributions of
can be readily estimated via (2).
In the ensuing subsections, two cases, i.e., continuous inspec-

tion data and discontinuous inspection data, are considered as
they are the most common practices in real-world applications.

A. Estimation With Continuous Inspection Data
In this case, the exact transition times of multi-state compo-

nents from one state to another are recorded. Put another way,
components are continuously inspected, and any event associ-
ated with state transition is tracked. Examples of such contin-
uous inspection data of 14 pieces of identical multi-state com-
ponents are tabulated in Table I, the deterioration process and
transition times of sample #10 are delineated in Fig. 2(a). As
seen from Fig. 2(a), sample #10 of the studied component tran-
sited to state 3 after sojourning at state 4 for 4.43 months, and
then transited to state 2 at 4.64 months, and eventually entered
the worst state 1 at 7.09 months.
To construct the likelihood function, one needs to rear-

range the data set. Let
denote the number of transitions

from state to state among all the observed data, and
denote the total time that components

are sojourning at state . The data in Table I can be therefore
converted into the format shown in Table II.
Let be the total number of transitions

from state , i.e., . Under the assumption
that the deterioration of multi-state component follows a
homogenous continuous-time Markov model, follows a
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TABLE II
REARRANGED CONTINUOUS INSPECTION DATA OF 14 SAMPLES

Poisson process with the parameter equal to , i.e.,
. The corresponding probability

density function, denoted as , can be expressed as

(3)

where is the intensity of leaving state
, and one has .
If a transition at state occurs, then the conditional probability

that the
transition is from state to state is given by

(4)

With the assumption that the multi-state component de-
teriorates with a homogenous continuous-time Markov pat-
tern, the set of quantities

follows the multinomial distribution with
parameters and . The cor-
responding multinomial probability mass function, denoted as
, is written as

(5)

Thus, the likelihood function is the product of the density
functions of the Poisson distributions, i.e., (3), and the multi-
nomial probability mass functions, i.e., (5), for all states, and it
yields an expression as shown in (6) at the bottom of the page,
where is the matrix containing all the transition intensities
between any pair of states.
The prior information for the unknown parameters needs

to be specified under the Bayesian estimation framework. The
prior distribution for could be chosen among the distribu-
tions of Gamma, Beta, and other types, depending on the prior
knowledge or experts' subjective adjustments [18]. Note that
the prior distribution cannot be specified arbitrarily, because the
prior distribution has a significant impact on the posterior dis-
tribution, especially when the amount of observed data is lim-
ited. Several effectivemethods have been proposed to determine

priori distributions, such as non-informative priors, conjugate
priors, Jeffreys' priors, empirical Bayesian priors, maximum en-
tropy priors, bootstrap priors, random weight priors, and prob-
ability encoding methods [18], [23].

B. Estimation With Discontinuous Inspection Data
It is oftentimes impossible and unaffordable to continuously

inspect multi-state components in a system to get continuous
inspection data that exactly capture the transition time. In most
cases, multi-state components are inspected periodically or ran-
domly, and only the state of components at each inspection
point and the time interval between two adjacent inspections
are recorded. The collected data cannot directly reveal how long
the component resides in each state, or the exact transition path
through which the component degrades from the last observed
state to the current observed state. Compared to the continuous
inspection, the discontinuous inspection data are more general
and common in practical problems. A similar issue is encoun-
tered in the healthcare service industry, as reported in [24]. Ex-
amples of such observed data are tabulated in Table III, where
the 14 samples listed in Table I are inspected with different time
intervals. The inspection times of sample #10 are depicted in
Fig. 2(b). For instance, sample #10 was observed at state 4 at

months, and at state 2 at months. There is no infor-
mation about how long sample #10 has been staying at state 4,
and whether it moved from state 4 to state 3 and then to state 2,
or directly transited from state 4 to state 2.
To conduct Bayesian estimation for this case, the likelihood

should be constructed in advance. Under the assumption that a
component's deterioration follows a homogenous continuous-
time Markov model, the likelihood of the observed data of any
individual component is s-dependent on the observed states of
the component in the last inspection, regardless of its previous
states sojourning before the last inspection. If the component is
observed at state in the last inspection, which can be regarded
as the initial state of this inspection, the probability of the com-
ponent being at state after is denoted
as , where is the time interval between two adja-
cent inspections. is a function of the inspection in-
terval and the component's transition intensities , and it

(6)
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TABLE III
DISCONTINUOUS INSPECTION DATA OF 14 SAMPLES

can be computed by (1). Hence, all the observations with the
same observed state in the last inspection and the same time in-
terval between two adjacent inspections can be regarded as
repeated s-independent trials, and characterized by a multino-
mial distribution.
Let denote the number of inspections in which a

sample is observed at state in the last inspection, and at state
after an inspection interval . One has .
Notice that is a part of , and
it corresponds to the case where a component is observed in
the same state in two consecutive inspections with a time
interval . The set of quantities
follows a multinomial distribution with parameters and

. The corre-
sponding multinomial probability mass function, denoted as
, is written as

(7)
Nevertheless, random inspections are oftentimes imple-

mented rather than periodical ones. In such cases, there is

more than one distinct time interval between two adjacent
inspections, like the one shown in Table III. To generalize this
scenario, a vector
with finite time intervals is used to represent distinct time
intervals between two adjacent inspections in the cases of
non-periodical inspections. To derive the likelihood function
containing all the observed data, the original data has to be
rearranged according to . For every
within , one needs to get and

, which can
be counted from original data. For example, in Table III,
there are three distinct time intervals between two adjacent
inspections, i.e., 2 months, 3 months, and 4 months. Thus, one
has months. The data
in Table III can be therefore converted to the form shown in
Table IV. By rearranging the observed data, one can get the
values of for each distinct inspec-
tion interval. Hence, the likelihood of all the observed data
with the same inspection interval but different observed
states in the last inspection can be written as shown in (8) at the
bottom of the page.
The likelihood of all the observed data can be derived by mul-

tiplying the likelihoods of all , and written as shown in (9)
at the bottom of the page.

(8)

(9)
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TABLE IV
REARRANGED DISCONTINUOUS INSPECTION DATA OF 14 SAMPLES

By substituting (9) into the Bayesian formula (2), together
with the prior distribution, one can obtain the posterior distribu-
tions of the unknown transition intensity estimates.
Note that, if there is no analytical solution to the posterior

distributions of transition intensities, then the Markov Chain
Monte Carlo (MCMC) method as an alternative can be used
to generate a posterior distribution via simulation. The specific
MCMC method used in our study is the Gibbs Sampling
method, which samples one of the transition intensities from its
conditional posterior distribution with the remaining transition
intensities fixed at their current values. After an appropriate
burn-in period of simulations, the samples of transition inten-
sities produced by the Gibbs Sampling method can represent
samples drawn from the posterior distributions of transition
intensities. The details of the MCMC method are available
in [20], [21], and it can be readily implemented via software,
like OpenBUGS and WinBUGS [25]. The exemplified scripts
of estimating posterior transition intensities for a three-state
component with continuous, and discontinuous inspection data
via the MCMC in the WinBUGS are given in the Appendix.

IV. RELIABILITY AND PERFORMANCE ASSESSMENT FOR MSS

The system performance distribution (also called state distri-
bution) at any time instant can be determined based on its com-
ponent state distribution along with the physical structure of the
system [2]. By using the UGF [2], [9], the state distribution of a
multi-state component can be expressed by a polynomial form
as , where computed by
(1) is a function of transition intensities of component .

Likewise, the performance distribution of an MSS can be
written in the same UGF fashion as ,
where denotes the probability of a system staying at state
at time instant , and it is a function of component state prob-

abilities, i.e., ; is the corresponding performance ca-
pacity of system state ; is the total number of system states.
The UGF of the system can be recursively determined by UGFs
of components via composition operators; see more details in
[2], [9].
The reliability of the MSS in question is defined as the

probability that the system's performance capacity is not
less than the user demand . If the user demand is a
random quantity with possible discrete values, denoted as

, and the corresponding probability mass
function , the system reliability function is
formulated as

(10)

where is a unity function, i.e., , and
. The MSS instantaneous expected performance

capacity at any time instant can be computed by

(11)

Unlike existing works where transition intensities of
multi-state components are assumed to be precisely known
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Fig. 3. The flowchart of generating the posterior distributions of system state probabilities via a simulation way.

or represented by crisp values (i.e., point estimation), in our
study, transition intensities are estimated from both experts'
prior knowledge and observed data. The estimated transition
intensities of component from the proposed Bayesian frame-
work is characterized by the posterior distribution denoted as

. Hence, for any time instant , the probability
of multi-state component staying at state is therefore a
random quantity as well, and can be computed by substituting
the posterior distributions of into (1). Moreover, the prob-
ability of system sojourning at state at any time instant
is also a random quantity as it is a function of component
state probabilities. Computing system state probabilities with
the posterior distribution of transition intensities can be
essentially viewed as an uncertainty propagation problem; that
is, the estimation uncertainties of transition intensities will
be eventually propagated to the system state level and other
quantities of interests. Nevertheless, it is a challenging task
to estimate the posterior distributions of these quantities of
interests (e.g., system state probabilities, system reliability
function, etc.) analytically due to nonlinearity between the
transition intensities and these quantities. To overcome this
issue, an alternative method (shown in Fig. 3) is developed in
this work to approximate the posterior distributions of system
state probabilities via simulation.
According to Fig. 3, samples of transition intensities

for each component are randomly generated per the analytical

expression of the posterior distribution (if its analytical solution
exists by solving (2)) or the MCMC simulation, where is a
pre-specified value in a range of representing the
number of samples to be produced to approximate the posterior
distribution. The state distribution of component with respect
to the sample of transition intensities can be obtained by
solving (1). By aggregating the UGFs of all components for the

sample of transition intensities , one can get the UGF and
the state distribution (i.e., ) of the entire systemwith respect
to the sample of transition intensities of all components.
The posterior distributions of system state probabilities at any
time can be approximated by fitting all the samples of
system state probability with either a parametric distribu-
tion (e.g., normal, Weibull) or non-parametric distribution (e.g.,
the empirical distribution).
Because the state probability of components is a set of

random quantities, the posterior system state probabilities are
random quantities as well. Any pair of system state proba-
bilities at any time may be s-dependent if they share the
same transition intensities from s-identical components. In
addition, if an MSS contains more than one copy of the same
type of component (also called repeated component in [26]),
each sample of transition intensities randomly generated from
posterior distributions should be simultaneously substituted
into the UGFs for all the repeated components because these
repeated components share the same reliability estimate [26].
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Fig. 4. Posterior distributions of for continuous inspection data and discontinuous inspection data.

TABLE V
POSTERIOR SUMMARIES OF FOR CONTINUOUS INSPECTION DATA AND DISCONTINUOUS INSPECTION DATA

V. ILLUSTRATIVE EXAMPLES

Two illustrative examples are presented in this section to
demonstrate the implementation of the proposed method.
The first example is used to illustrate the effectiveness of the
proposed Bayesian method in terms of transition intensity
estimation for a single component. In the second example,
reliability and performance assessment for a multi-state power
generation system will be conducted.

A. A Single Power Generator
The studied generator is a multi-state component with four

possible performance capacities. The performance capacities
with respect to each state are kW, kW,

kW, and kW; and the initial state of the gen-
erator prior to the use is the best state 4. The transition intensities
are set as month, month,

month, month, month,
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TABLE VI
COMPARISON OF ESTIMATION ERRORS WITH 14 SAMPLES

Fig. 5. Estimation errors with respect to the amount of observation data.

month, and they are estimated via the proposed method.
We randomly generated 14 data sets emulating the actual obser-
vations (both continuously inspected, and discontinuously in-
spected) as shown in Table I, and Table III (respectively), cor-
responding to 14 samples (or realizations) of the studied gen-
erator. Ideally, by merging experts' prior knowledge with these
actual observations, the estimated transition intensities should
be close to the pre-set values which are used to generate the ob-
served data given in Table I and Table III.
To construct the likelihood functions for the two types of data,

the data in Table I and Table III are converted into Table II and

Table IV. The likelihood function for the continuous inspection
data can be obtained by plugging the observed data in Table II
into (6), and the likelihood function for the discontinuous inspec-
tion data can be obtained by substituting the observed data in
Table IV into (9).Theprior of each transition intensity is assumed
to be a uniform distribution with a range of month, i.e.,

. The Bayesian formula shown in (2)
can be constructed by combining the likelihood function and
the prior distribution. Because the posterior distribution is quite
complicated, and no close form exists, the MCMC method is
used to generate the posterior distribution via simulation.
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Fig. 6. Posterior state probabilities over time.

Fig. 4 plots the posterior distributions of computed from
5000 MCMC simulations after a burn-in period of 10,000 sim-
ulations. The true value of each transition intensity is indicated
by a vertical solid line. As observed from Fig. 4, the estimates
from the proposed Bayesian method encompass the true values
of . Table V summaries the statistic information of poste-
rior distributions of for the continuous inspection data, and
the discontinuous inspection data. As observed from Table V,
the Bayesian estimation in both cases can effectively estimate
the unknown parameters as most of the means of the estimated

are close to their true values. As seen in Fig. 4, if the
amount of data sets increases to 100, the posterior distributions
of are closer to the true values, and possess less uncertainty
compared with the estimation by using 14 sets of observed data.
To compare the accuracy of the Bayesian estimation in the

two cases, the estimation error is computed. Table VI gives the
estimation error of for the continuous inspection data, and the
discontinuous inspection data, and it is evaluated by

(12)

where is the true value of . The results in Table VI
illustrate that, compared to the prior distribution, the posterior
distributions of estimated parameters are closer to the true
values in most cases. In addition, the Bayesian estimation with

the continuous inspection data is more accurate than that with
the discontinuous inspection data.
Fig. 5 depicts the trend of estimation errors with the increase

of observation data. For each data size, we use ten sets of ran-
domly generated samples, and compute the average value of es-
timation errors. See that the estimation errors of both cases are
approaching zero as the amount of data goes to infinity, indi-
cating the proposed Bayesian estimation can achieve reasonable
accuracy with sufficient observation data. The uncertainty asso-
ciated with parameter estimation is also reduced by increasing
the data. Additionally, it is also found that estimations from con-
tinuous inspection data always outperform that from discontin-
uous inspection data, regardless of the data size.
Given the posterior distributions of , the posterior state

probabilities of the studied component at any time instant can
be computed according to the simulation procedure introduced
in Section IV. Fig. 6 plots the 95% confidence bounds, and the
means of the posterior state probabilities for both cases. Fig. 7
delineates the posterior distributions of the state probabilities at

months for both continuous and discontinuous inspection
data.
Note that the proposed Bayesian estimation method is also

applicable to any components with more than four states. Nev-
ertheless, the computational cost will increase due to two rea-
sons. First, the number of Kolmogorov differential equations in
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Fig. 7. The posterior state distributions at months.

Fig. 8. The structure of the studied multi-state power generating system.

(1) which are used to calculate component state probabilities as
a function of transition intensities equals , the total number
of states of a multi-state component . The complexity of the
likelihood functions, i.e., (6) and (9), will also increase with re-
spect to because the number of the possible outcomes of the
multinomial distribution in (6) and (9) increases. Second, the
number of transition intensities to be estimated will be increased

to if a higher state can transit to any lower states.
Consequently, the number of samplings in each simulation iter-
ation of the MCMC method will increase to .

B. A Power Generating System
A multi-state power generating system consisting of three

multi-state power units is shown in Fig. 8.
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TABLE VII
DISCONTINUOUS INSPECTION DATA OF 14 SAMPLES FOR COMPONENT #1

TABLE VIII
CONTINUOUS INSPECTION DATA OF 14 SAMPLES FOR COMPONENT #2

Component #1 has four possible performance capacities:
kW, kW, kW, and

kW. And it is discontinuously inspected every 2 or 4 months.
The corresponding inspection data collected from 14 sam-
ples are tabulated in Table VII based the proposed formats.
Component #2 has three possible performance capacities:

kW, kW, and kW. And it
is continuously inspected. The exact transition times from
14 samples are recorded in Table VIII. Component #3 is the
multi-state generator as studied earlier in Section V-A. The
system performance capacity at any time instant is equal to

.
By substituting the collected data into (6) or (9), the likeli-

hood function of each individual component can be obtained.
The prior of each transition intensity is also assumed to be a
uniform distribution with a range of month. In the same
manner with Section V-A, the posterior distribution of transi-
tion intensities of components 1 and 2 can be derived with the
assistance of WinBUGS software.
By using the UGF, the number of distinct performance ca-

pacities of the entire system can be identified, corresponding to
the number of system states. The studied system has eight dis-
tinct performance capacities, i.e.,

, kW. Following
the procedure introduced in Section IV, the posterior system
state probabilities can be evaluated by substituting the random

TABLE IX
USER DEMAND LEVELS

samples generated from the posterior distributions of the transi-
tion intensities of the three components into the corresponding
UGFs. Fig. 9 plots the mean, and 95% confidence bounds of
the posterior system state probabilities with respect to time .
To compute the posterior distributions of system state probabil-
ities at any time instant , the proposed simulation method takes
0.042 seconds via Matlab 2012 on a PC with an Intel Core i5
2.27 GHz CPU and 2.0 GB RAM when is set to 5000.
The possible values and the corresponding probabilities of

user demand are given in Table IX. Hence, the system reliability
at any time instant can be evaluated via (10), and its mean value
and the 95% confidence bounds are shown in Fig. 10. In the
same manner, by using (11), the mean and the 95% confidence
bounds of the instantaneous expected performance capacity are
also obtained, and shown in Fig. 11.
As exemplified in Section V-A, adding more observation data

will reduce estimation uncertainty. However, each component
in the MSS may have a different contribution to the reliability
estimation uncertainty of the entire system. To demonstrate this
point, we increase the amount of observation data from 14 to
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Fig. 9. The posterior system state probabilities over time.

Fig. 10. The reliability of the entire MSS.

100 for one of three components, and compare the uncertainty
reduction of system reliability estimation resulting from the im-
provement of parameter estimation of each component. Fig. 12

Fig. 11. The instantaneous expected performance capacity.

plots the mean and 95% confidence bounds of the estimated
system reliability before, and after adding observation data. It
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Fig. 12. The system reliability before and after adding observation data.

TABLE X
THE STANDARD DEVIATION OF SYSTEM RELIABILITY WITH 100 SAMPLES OF EACH COMPONENT COMPARED TO THE INITIAL DATA

is observed that the uncertainty of reliability estimation can be
significantly reduced by adding the observation data for com-
ponent #1 or component #2. Such a reduction is not obvious in
the case of increasing the data for component #3. The standard
deviations of the estimated reliability at several time instants
are presented in Table X, and the smallest standard deviations
(indicating the least amount of uncertainty) among four cases
are highlighted. As seen in Table X, compared with other cases,
adding observation data for component #1 leads to a greater
amount of uncertainty reduction at the very beginning stage (i.e.,

months). Nevertheless, it becomes more effective in term
of uncertainty reduction at the later stage (i.e., months)
by collecting additional data for component #2. Compared to
the previous two cases, the uncertainty reduction by increasing
the data of component #3 is always inferior.

VI. CONCLUSIONS, AND REMARKS

In this paper, a Bayesian framework is developed to assess
the reliability and performance of multi-state systems consisting
of multi-state components. The transition intensities that char-
acterize the deterioration process of multi-state components are
estimated by synthesizing experts' prior knowledge and obser-
vation data. The likelihood functions for both continuous and
discontinuous inspection data are derived. A simulation method
embedded with the UGF is developed to compute the poste-
rior component state probabilities, system state probabilities,
reliability function, and instantaneous expected performance
capacity. Our numerical experiments show that the proposed
Bayesian estimation can effectively estimate the unknown

parameters, and assess the reliability and performance of MSSs
via the posterior distributions of transition intensities.
It is worth mentioning that there are still some challenges to

be addressed in our future work. First, the Bayesian estimation
can be extended to more general cases by integrating non-ho-
mogenous continuous-time Markov models and semi-Markov
models. Second, allocating resources to reduce the uncertainty
of reliability estimation will be studied based on the current
work. Finally, the Bayesian estimation by combining observa-
tion data with a hierarchical relation will be investigated in our
future work.

APPENDIX

The WinBUGS scripts for estimating transition intensities of
a three-state component with continuous inspection data.
model{
#Model Construction
for (i in 2:3){ #transitions from states 2 and 3
#specify the Poisson distribution for the total number of transi-
tions ‘totalm[i]’

#parameter ‘poispar[i]’ for the Poisson distribution

#intensity of leaving state i ‘leavelambda[i]’
#and total time sojourning at state i ‘totalt[i]’
}

#specify the multinomial distribution for the numbers of
#transitions from state 3 to states 1 and 2‘

’
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#transition intensity from state 2 to state 1 ‘lambda21’

#transition intensity from state 3 to state 1 ‘lambda31’
#and transition intensity from state 3 to state 2 ‘lambda32’

#conditional probability that
#transition is from state 3 to state 1‘

’

#conditional probability that
#transition is from state 3 to state 2 ‘

’
# Prior Specification

#prior distributions (uniform distributions)
}
The WinBUGS scripts for estimating transition intensities of

a three-state component with discontinuous inspection data.
model{
#Model Construction
#specify the multinomial distribution for the numbers of
#transitions from state i to states 1, 2 and 3 ‘m[i,1:3]’

#expression of component state probability at state j given the
initial state i ‘p[i,j]’

#transition intensity from state 2 to state 1 ‘lambda21’
#and inspection interval ‘deltat’

#transition intensity from state 3 to state 1 ‘lambda31’
#and transition intensity from state 3 to state 2 ‘lambda32’

))

# Prior Specification

;

#prior distributions (uniform distributions)
}
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