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Abstract. Subjective factors and nonlinear characteristics, inherent in the importance identification for a fault tree in the reliability
and risk analysis, make it necessary for fuzzy (or possibilistic) approaches to accommodate the quantificational assessment
of epistemic uncertainty in a practical problem when data and information are very limited. After investigating the intuitive
interpretations, possibilistic information semantics, measure-theoretic terms and entropy-like models, a new axiomatic index
of importance measure for fault trees is proposed based upon possibilistic information entropy, which adopts the possibilistic
assumption in place of the probabilistic one. An example of the fault tree is provided along with the concordance analysis and
other discussions. The more conservative numerical results of importance rankings that involve more choices could be viewed as
“soft” fault identification under a certain expected value. Finally, possible extension to the evidence space and further research
directions are discussed.
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Notations and terminologies:

∅ – empty set
℘ (A) – a collection of subsets of A (power set

of A)
U – a universe of discourse (universal set)
� – sample space
A – a set element of U
F – a fuzzy subset of U
C – fuzzy complement of a set A

U (·) – U-uncertainty
p (·) – probability measure

� – topology of probability
π (·), Poss (·) – possibility measure

� – topology of possibility
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� – possibility distribution
P – probability distribution
r – possibility distribution function

µA (x) – membership function
S (p) – Shannon entropy
H (p) – Hartley measure

|A| – the cardinality of a finite set A
m – a basic probability assignment (a mass

function)
µA (x) – membership function
Nec (·) – necessity measure
Bel (·) – belief measure
Pl (·) – plausibility measure

N (m) – measure of non-specificity
AU – aggregate uncertainty measure
GH – generalized Hartley measure
GS – generalized Shannon measure
E – state space of fault mode
F – attribute space of fault possibility
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1. Introduction

With an ever-increasing tendency of taking uncer-
tainty factors into account in engineering design, fault
trees provide logical and diagrammatic structures and
have been widely used in reliability modeling and risk
analysis, especially for large-scale and complex sys-
tems, e.g. nuclear, chemical and transportation sectors.
Design and maintenance of such complex systems are
associated with common practice of risk-informed deci-
sion making.

In the qualitative and quantitative analysis proce-
dures for a fault tree, importance measures which
provide significance-ranking of the component failures
in evaluating how much a basic event (or cut set) con-
tributes to the top event (or cut sets) must be defined. An
important measure, acting as sensitivity or significance
analysis in essence [27], is a function of system struc-
ture, component life (distribution), and operation time.
Such ranking or prioritizing of basic events are valuable
for reliability improvement, quality assurance, safety
categorizations, or other similar activities. Therefore,
there is a need for identifying the importance of failures
of components or other basic events, which will prob-
ably result in a severe accident in testing and diagnosis
maintenance, daily configuration control, and design
improvement of complex systems [38].

Different types of importance measures contain dif-
ferent information and expressions, thus they have
their own uses. With respect to the different objects
and demands, the categories of importance measure
include structural importance, probability importance
(Birnbaum importance), criticality importance, and
Fussell-Vesely importance, among others. From the
perspective of applications, importance measures can
be classified as risk importance, safety importance, and
uncertainty importance [4].

In the quantitative evaluation of fault trees, special
attention needs to be given to the lack of pertinent
failure-rate data. Common reasons for the lack of sta-
tistical data include the following:

– The increased complexity of large-scale systems;
– The collection of statistical data being difficult

and/or costly;
– The rarity of failures in some highly reliable sys-

tems; and
– Data being imprecise or unavailable under various

testing conditions.

Considering uncertainties in reliability and risk
analysis, a distinction is commonly made between

aleatory (stochastic) uncertainty and epistemic (sub-
jective) uncertainty, respectively. Aleatory uncertainty
derives from natural variability of the physical world
and reflects the inherent randomness in nature, whereas
epistemic uncertainty arises from human’s imperfect
knowledge of understanding the physical world and
the lack of the ability of modeling the physical world.
Hence, how to treat and quantify different uncertain-
ties associated with a risk-informed decision-making
has become a challenging task. In engineering safety
assessment, probability is a predominant tool being
used to measure uncertainties [17, 18].

Conventional approaches for analyzing an index of
importance, which is based on the probability theory
and the binary-state assumption (perfectly functioning
or completely failed), have manifested their deficiencies
when the collected data is insufficient and reliabil-
ity indices are imprecisely represented. To circumvent
these difficulties, some theoretical improvements and
practical explorations have been achieved to date in
place of probabilistic methodology [27]. The pioneer-
ing work on fuzzy fault tree analysis (fuzzy FTA)
belongs to Tanaka et al. [37], who treated imprecise
probabilities of basic events as trapezoidal fuzzy num-
bers and defined an index function analogous to the
importance measure for ranking the effectiveness of
each basic event. Later on, Huang et al. [20] presented
a model of posbist fault tree analysis based on the con-
text of possibility measures. Li et al. [28] describes
the quantification vagueness making use of triangular
fuzzy membership functions Fuzzy importance used in
fuzzy FTA was originally investigated by Furuta and
Shiraishi [14]. They proposed a kind of importance
measure by means of the max/min fuzzy operator and
fuzzy integrals other than Tanaka’s approach. Liang
and Wang [29] proposed another importance measure,
named fuzzy importance index, which is calculated by
ranking of triangular fuzzy numbers. Suresh et al. [36]
put forward a simpler fuzzy importance measure (FIM),
which is based on the Euclidean distance approach.
Such work was followed by that of Guimarêes and
Ebecken [15]. Pan and Yun [31] assumed that the gates
in fault tree are modeled as a fuzzy relation, and then
proposed a procedure to obtain possibility of the top
event and a new importance index of each compo-
nent, especially for large-scale and complex systems.
Another consideration of the importance measure is
the trade-off between the improvement and cost while
improving the system reliability. Cho and Yum [6] pro-
posed a two-stage approach to achieve computational
efficiency in allusion to complexity for large-sized FTA.
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It should be noted that the aforementioned works have
one common feature: a certain specific distribution of
model inputs is required in the analysis of basic events
or logic gates.

More recently, imprecise probability theory has been
introduced into establishment of several new impor-
tance measures. Hall [16] has explored three different
uncertainty-based sensitivity indices for imprecise
information, addressing the intractability that the model
inputs are expressed as intervals or sets of inter-
vals without particular distribution over the intervals.
Borgonovo [3] has introduced a global sensitivity anal-
ysis method with the moment independent uncertainty
measure and has then discussed its application. Very
recently, Contini and Matuzas [6] have described new
algorithms for determining the importance of initiating
and enabling events for both coherent and non-coherent
fault trees. Huang et al. [21] presented a priority order-
ing method to improve the efficiency when dealing with
large and complex systems taking advantage of BDD.
Yang et al. [41] proposed an epistemic importance to
describe the effect of ignorance degree of event on the
basis of evidence theory. It is demonstrated that the
research angle has been expanded a) from the first-
order sensitivity measure to the second-order sensitivity
measure [43], b) from the component-level (basic-event
level) to gate-event level [6], c) from the variance-
based sensitivity indices to the relative entropy-based
sensitivity indices [16], and d) from the probabilis-
tic importance measure to interval-valued importance
measure [7, 16], and e) from the moment correlated
measure to the moment independent measure [3]. More
holistic information and overviews can be found in [1,
2, 13, 23].

Considering uncertainty inherent involved in some
practical situation, we found that the aforementioned
measures indeed encountered epistemic uncertainty,
which is relevant to subjective information deficiency.
It implies that the completeness and preciseness of the
probabilistic information, as a consequence of the addi-
tivity axiom, is often violated in practice for the sake
of missing data or conflicting evidence. The reported
approaches to importance analysis, however, rarely
consider non-probabilistic information measurements
and do not work well on the essence of non-specificity
characteristic. In fact, the possibility, by which a low-
probability event can occur, is not always low [40],
especially for the catastrophic failure in nuclear power
plants. As nuclear power plants are designed based on
the defense-in-depth principle, a large accident will be
probably the result of combinations of multiple basic

events (or cut sets), thus uncertainty propagation should
be taken into account in risk and reliability analysis
process. Moreover, subjective assessment and linguis-
tic information about expert heuristics are substantially
imprecise and may leads to either over-estimated or
under-estimated results. Furthermore, in constructing
the importance measure in a fault tree, there are some
nonlinear and imprecise factors to be considered. Tak-
ing the value of a structural or probability importance
for example, it depends on not only the location of
a certain basic event in a minimal cut (or path) sets
(MCS/MPS), but also on the frequency of this basic
event occurred in such MCS (or MPS) [27]. The non-
linearity, which often occurs between location and
frequency, is also one of the difficulties in the impor-
tance identification.

As to we know about existing approaches, no mat-
ter theoretical explorations of the general measure of
information and practical applications in various engi-
neering backgrounds, limited work that incorporates
and alleviates the above mentioned difficulties in terms
of possibilistic uncertainty was found. There is no
clear consensus on how to make meaningful possi-
bilistic semantic and information measurement in the
importance quantification. That is the reason for us to
introduce a new importance measure for fault trees.

To accomplish this, we start with an integrated angle
of measure grounds based on possibility-probability
transformations (Section 2) and operational methods
based on epistemic uncertainty quantifications (Section
3). A new possibilistic uncertainty-based importance
measure in the foundation of the modeling principles
and the properties of the possiibilistic entropy is intro-
duced in Section 4, followed by a case study of a nuclear
power plant to illustrate the possibilistic approach for
intuition constraint condition in comparison with the
existent ones in Section 5. A further discussion and
brief conclusion are given in Section 6.

2. Possibilistic measure and representation of
epistemic uncertainty

2.1. Fuzzy-measure representations of epistemic
uncertainty

We note that in the presence of epistemic uncer-
tainty, importance indexes in fault tree, which are
used to measure the level of reliability and risk, are
usually defined for parameters or for basic events
in the context of fuzzy measures. The probabilistic
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model of conventional importance measures represents
uncertainty-based information in the foundation of clas-
sical Lebesgue measure, which is the emergence of
nonlinear integrals such as Sugeno integral and asso-
ciated measures. Indeed, a fuzzy measure, first coined
by Sugeno, specifies the degree to which an arbitrary
element of the universal set belongs to the individual
crisp subsets. Hence, when data is scarce, the concept
of fuzzy measure provides us with a useful framework to
represent different types of uncertainty. These represen-
tations are within various special classes of measures
along with the corresponding properties [9, 39], as illus-
trated in Fig. 1.

In the traditional probabilistic approach to repre-
sentation of epistemic uncertainty, the uncertainty in
importance identification is characterized by a sequence
of probability distributions. We consider one of alterna-
tive approaches to represent and characterize epistemic
uncertainty in risk assessments, including interval or
imprecise probability, possibility theory, and evidence
theory. Specifically, it has been suggested that a possi-
bilistic representation of epistemic uncertainty may be
more appropriate when sufficient statistical data are not
available due to the lack of repetitive tests.

Given a universal set U and assuming the power set
� = 2U , a possibility measure, Poss (·) is a mapping
from � to [0, 1] and uniquely associated with a possi-
bility distribution function r (u) for each A ∈ 2U such
that [40]

Poss (A) ≡ π (A) = sup
u∈A

r (u) (1)

And the property of possibilistic normalization
supu∈U r (u) = 1 should be satisfied. Since r (u) is
actually non-distributive compared with a probability
distribution function, it seems more precise to call it
the basic possibility function. Actually r (u) estimates
the consistency of the statement u ∈ A and encodes
a preference relation about the possible values of the
variable that takes values in U. In this regard, the pos-
sibility acts as a subjective measure characterizing the
extent to which, on one side, a person believes that an
event can occur, or on the other side, the available evi-
dence indicates that an event can occur. As one of the
two dual monotone measures, necessity measure, Nec

is then defined as

Nec (A) = 1 − Poss

(
Ā

)
(2)

And has the properties as shown in Table 1.

Table 1
A comparison of measures and properties between possibility and

probability

Possibility Probability

Distribution �, measure π Distribution P, Probability p

sup
u∈U

π (u) = 1
∑
u∈U

p (u) = 1

∀ (A, B) ∈ ℘ (U) ∀ (A, B) ∈ ℘ (U)

Poss (A) = π (A) = sup
u∈A

� (u) Pro (A) = p (A) = ∑
u∈A

P (u)

π (A ∪ B) = max (π (A) , π (B)) p (A ∪ B) = p (A) + p (B),
when A, B is disjoint

Nec (A ∩ B) = min (Nec (A) , p (A ∩ B) ≤ p (A) · p (B)
Nec (B))⎧⎨

⎩
max

(
π (A) , π

(
Ā
))

= 1

π (A) + π
(
Ā
)

≥ 1

Nec (A) + Nec

(
Ā
)

≤ 1

p (A) + p
(
Ā
)

= 1

∀u ∈ U, � (x) = 1 ∀u ∈ U, P (x) = 1
/

|U|

2.2. Intuitive interpretations and
probability-possibility transformations

A theory based on possibility and necessity mea-
sures is called possibility theory [40]. Equation (1) also
coincides with the well-known fuzzy-set interpretation
of possibility theory proposed by Zadeh [40], which
constructed the natural connection between member-
ship degrees and possibility degrees with set-valued
functions [30]. For example, let us consider a simple
proposition of “ P � x is A (or x ∈ A)” to implement
importance analysis in a fault tree. The truth of such
proposition reveals the degree of evidence x (e.g. the
unavailability of the component or basic event), which
supports set A (e.g. a certain undesired accident). Con-
sider set A is a crisp set (or a fuzzy set) with respect to
uncertainty-based information obtained from the fault
tree considered, and we can interpret the meaning of
the proposition as shown in Fig. 2.

From Fig. 2 (a) and (b), we note that when set A is
a crisp set, Equation (1) and Equation (2) can be inte-
grated as a dual measure with intuitive interpretations
as follows⎧⎪⎨

⎪⎩
Truthoptimistic = Poss (A) = sup

∀x∈A

π (x)

Truthpessibimistic = Nec (A) = 1 − sup
∀x/∈A

π (x)
(3)

Similarly, from Fig. 2 (c) when set A is a fuzzy
set, Equation (1) and Equation (2) can be integrated
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Fig. 1. A measure-background of different representations of epistemic uncertainty.

Fig. 2. Intuitive interpretations of dual measures when A is a crisp (or fuzzy) set.

from both the optimistic and pessimistic viewpoints as
follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Truthoptimistic = Poss (A)

= sup
∀x

(π (x) ∧ µA (x))

Truthpessimistic = Nec (A)

= 1 − sup
∀x

[π (x) ∧ (1 − µA (x))]

(4)

Owing to the above mathematical framework for
managing uncertain knowledge, possibility theory
represents, propagates, and integrates imprecise or
incomplete information for reasoning and decision-
making in reliability and risk assessments by possibility
distributions. Moreover, the associated possibilis-

tic representation of epistemic uncertainty can be
transformed into a probabilistic representation, with
reference to a specific fault tree. Currently the main
transformations include [8, 11, 24, 40]:

– Zadeh’s consistency principle;
– Dubois and Prade’s transformation from a his-

togram;
– Transformation based on maximal specificity;
– Klir’s transformation based on uncertainty invari-

ance; and
– Yamada’s transformation based on evidence theory.

For example, let (F, m) be the body of evidence
as defined in evidence theory, then Ep = (

Fp, mp

)
and Eπ = (Fπ, mπ) are bodies of evidence to define
probability and possibility distribution, respectively. So
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Table 2
Probability-possibility transformations based on evidence theory

Possibility types Given principles Transformation expressions

T1: Ordinal scale Probabilistic order preservation principle Fπ
k

= k∪
h=1

Uh, ∀ k = 1, . . . , K

T2: Ratio scale (1) Consistency principle and probabilistic order
preservation principle

π (ui) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
k=qj

p (uk) , (qj ≤ i ≤ rj, j = 1, . . . , m)

n∑
k=i

p (uk) , otherwise

T3: Ratio scale (2) Equidistribution principle p (ui) = mp ({ui}) =
K∑

h=k

mπ

(
Fπ

h

)
/|Fπ

h
|, ∀ui ∈ Gπ

k
= Fπ

k
− Fπ

k−1

Fig. 3. Different information patterns with respect to corresponding quantifications.

the transformation between p (ui) and π (ui) can be
substituted for the transformation Ep and Eπ, where
mp = ({ui}) = p (ui) and the focal elements are
described as FP = {{ui} |ui ∈ U1 ∪ U2 . . . ∪ UKp

}
, as

follows in Table 2.

3. Possibilistic entropy and quantification of
epistemic uncertainty

3.1. Information-measure quantifications of
epistemic uncertainty

In real world, what we concern much more is the
amount of subjective information rather than statisti-
cal information only. Considerable efforts have been
devoted to measurement methodologies of the infor-
mation recognized by subjective perceptions, linguistic

opinions, as well as information of single signal, alter-
able sources, and channels [32]. In the practice of relia-
bility and risk analysis, when the information pertaining
to an uncertainty quantity of interest is expressed only
as a set of possible values that the quantity might take
from, we look upon the information as being impre-
cise. Generally, we classify the information of evidence
x in a fault tree as the following two patterns, whose
information quantifications are illustrated in Fig. 3.

From Fig. 3 (a1) and (a2), we see that conflict-
ing information could be quantified in the probability
context, while from Fig. 3 (b1) and (b2), possibility
measurements suit to quantify consonant information.

The attempt to quantify uncertainty has lead to an
uncertainty function for each likelihood distribution.
This agrees with the informal properties of uncertainty
to some extent [25]. All major theories of uncertainty
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Table 3
A summary of information quantifications for different uncertainties

Type Name Formula

Classical Hartley information H (A) = log2 |A|
Shannon entropy S (p) = −

n∑
i=1

pi log2 pi

General U-uncertainty U (�) =
n∑

i=1

(πi − πi+1) log2 i

Vagueness Measure of fuzziness fC (A) = |X| − ∑
u∈U

|µA (u) − C (µA (u)) |
Measure of nonspecificity V (m) = ∑

A∈F

m (A) log2 |A|
Ambiguity Measure of dissonance E (m) = − ∑

A∈F

m (A) log2 Pl (A)

Measure of confusion C (m) = −
∑
A∈F

m (A) log2 Bel (A)

permit defining some numerical formulations for quan-
tifying the information of uncertainty inherent in
information sources, i.e. measures of uncertainty, as
shown in Table 3.

In view of two types of uncertainty as possibilistic
uncertainty and probabilistic uncertainty respectively,
two classical measures of uncertainty have been corre-
spondingly established successively as Hartley measure
(or Hartley information) and Shannon measure (or
Shannon entropy) [10, 11]. The former one applies to
uncertainty conceived in terms of classical set theory
and intends to capture the lack of specificity inher-
ent in a finite set A of possible alternatives, by a set
function H(A) defined as (the cardinality |A| is deter-
mined by the numbers of elements in A); whereas
the latter one, Shannon entropy, qualifies uncertainty
formalized in terms of precise probability theory and
characterizes the amount of information by the distri-
bution p (·), which is the most popularly used measure
of uncertainty at present. Moreover, Shannon entropy
is exemplified as the difficulty of discerning the out-
come more likely eventuated. Provided that the case
where pj = 1/n means the maximal uncertainty, the
total evidential claim which conflicts with any alterna-
tive one is exhibited by

(
log2 p (u)

)
and can be extended

on a different scale. The Shannon entropy indicates the
weighted average of conflict among evidential claims as
the expected value of information provided, expressed
by p (u). However, the limitation of classical Shannon
information theory lies in its unsuitability for intuitive
information. This is due to that it stresses the transfer
of information, but does not question the meaning of
signals and the interpretations by observers.

According to the classification of uncertainty by Klir
[24–26] from the viewpoint of information semantics,
as seen in Table 3, the Shannon entropy measures

the uncertainty emerging from randomness or conflict;
whereas the Hartley measure captures that aspects of
uncertainty characterized by the term non-specificity
(or possibilistic ignorance). The degree of Hartley
information is indeed the degree of non-specificity.
The notion of non-specificity means our inability to
distinguish which of several possible alternatives is
the true one in a certain situation. Indeed the larger
the set of possible alternatives is, the less specific is
the characterization and vice versa.

With the rapid-growing uncertainty theories, the
concept of information measure has been pushed fur-
ther under the framework of generalized information
theory [24]. In accordance with the two classical
types of uncertainty and their corresponding informa-
tion models, these new trends of extensions can be
obtained as Shannon entropy-like model and Hart-
ley entropy-like model, respectively. Their common
properties of axiomatic requirements such as additiv-
ity, sub-additivity, expansibility, symmetry/consistency
and continuity etc, expressed in a generic form [25,
26], make it credible to consider importance measures,
transforming from one theory (e.g. probability theory)
to another one (e.g. possibility theory) as request.

Comparing with the Shannon-like measures, which
are only justified on intuitive grounds without satisfy-
ing the sub-additivity property, Hartley-like measure
has been discovered in the framework of bodies of evi-
dence, focusing on the derivation of functions satisfying
proper axioms by means of suitable techniques. More
details and constructive results could be found in refer-
ences [24, 39]. In this paper, our focus is the possibilitic
entropy deriving from the so-called Hartley measure
and its extension, which requires a well-founded under-
lying theory of uncertainty-based information for our
discussions.



A
U

TH
O

R
 C

O
P

Y

1020 L.-P. He et al. / Importance identification for fault trees

3.2. Semantics interpretations and axiomatic and
operational entropy models

The treatment of information measures may be
twofold. First, the operational approach is based on
coding-theoretic meaning, which represents the ideal
rate of a compression code. Second, the axiomatic one
is relevant to the viewpoint of verifying some proper-
ties belong to an adequate information measure by a
specific functional solution, concerning about the per-
spective of uncertainty management. When it comes to
possibility framework, we will exhibit such two entropy
models proposed by the two approaches.

Given a basic possibility function r on the domain of
discourse U = {u1, u2, . . . , un}, it is assumed that the
n-tuple function of possibility (possibility profile) r =
{r1, r2, . . . , rn} and subsets Ai = {u1, u2, . . . , ui} are
both recorded in nested structures, i.e. 1 = r1 ≥ r2 ≥
. . . ≥ rn and Ai ⊆ Ai+1 (A0 = ∅ and An = U). Con-
sider a mapping m : 2U → [0, 1] defined on the power
set 2U , satisfying m (∅) = 0 and

∑
A∈2U m (A) = 1.

Here m (A) /= 0 only when A = Ai. Let m (Ai) = mi,
then the n-tuple m = {m1, m2, . . . , mn} is regarded as
the sets of basic probability assignments (BPA) [24].
Such consonant belief structures provide the measure-
ground for possbilistic importance and then the ordered
possibility distributions could be denoted as

ri = mi + mi+1 + . . . + mn (5)

Solving them for mi, we arrives at

mi = ri − ri+1 (6)

Owing to this, the measure of non-specificity as
shown in Table 3 can thus be preferably developed
into the generalized Hartley measure (GH) in the gen-
eral evidence space [24], denoting a weighted average
of Hartley measure of all focal elements (A ∈ 2U and
m (A) > 0), i.e.

GH (m) =
∑
A∈2U

m (A) log2 |A| (7)

Whose essential properties of additivity and sub-
additivity have been validated at present.

In the case of possibilistic uncertainty, the GH func-
tional can be expressed in various forms and is usually
called U-uncertainty [24], only through broadening the
notion of possibility and as a possibilistic counterpart
of the Shannon entropy [19]. According to Equations
in Table 3, we obtain the weighted expression of
U-uncertainty by the formula

U (r) =
n∑

i=1

(ri − ri+1) log2 |Ai| (8)

Essentially, it is a class of continuous and non-
decreasing uncertainty measures with monotonicity,
with similarity of the entropy-like function to a certain
extent. In order to make the expected value of infor-
mation meaningful, there exists

∑n
i=1 (ri − ri+1) = 1

(rn+1 = 0).
In addition to the axiomatic entropy-like model,

the study of possibilistic information entropy Hε (�)
[33] as an operational solution to the correspond-
ing information-coding problem enriches the contents
of possibilistic information theory. Given information
sources � with the length of coding n, let Rn (·) denotes
a compression rate of optimal codes, the function of
possibilistic entropy can be written as

Hε (�) = lim
n→∞ Rn (π, ε)

= log |{ai : πi (a) > ε}| (0 ≤ ε < 1)
(9)

Hε (�) settles both the problems of source coding
(i.e. information compression to smaller sizes) and
those of channel coding (i.e. information protection
from transmission at a higher rate). Moreover, anal-
ogous to the probabilistic formulation of information
entropy Hε (P), Hε (�) is precisely equal to the Shan-
non entropy when ε > 0, or the Hartley measure when
ε = 0. In fact, by means of replacing probabilities
by possibilities and independence by non-interactivity,
the possibilistic model of data transmission is more
likely to be a “soft” coding with mathematically vague
constraints, e.g. linguistic descriptions with practical
meaning [34, 35]. At the same time, when investigat-
ing possibilistic coding based on distortion measure,
we found that the typical ideas in traditional prob-
abilistic approach indeed inspired the improvement
for possibilistic information theory, which adopts the
asymptotic point of view induced by the Shannon theory
and attempts to provide finite-length code constructions
afterwards. In a strict sense, the operational approach
to possibilistic analogues of entropy is also meaningful
from the viewpoint of axiomatic foundations [33].

Without loss of generality, due to the definition of the
cardinality-based function [24], it follows directly that
|Ai| = i and log2 |A1| = log2 1 = 0. Equation (8) can
thus be further simplified as

U (r) =
n∑

i=2

(ri − ri+1) log2 i (10)
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Here U (r) preserves the ordering of r on the same set
in the range of

[
0, log2 |U|]. In this sense, U (r) is inter-

preted in semantics as exactly a rate of transmission of
the number of possible events (or acceptable choices),
where log2 i represents the feasibility of transmitting
the sent information and (ri − ri+1) denotes the frac-
tions of the population that have to transmit precisely
the event (or choice) ui [32].

The branching theorem is essential among all the
axiomatic requirements for obtaining a unique measure
of possibilistic uncertainty. The uniqueness of U (r)
has been well established after Klir and Mariano [26]
formulated the possibilistic branching requirement on
axiomatic grounds.

4. Construction of possibilistic entropy-based
measures of importance

4.1. Model framework and principles of
matrix-based representation

With the aim of exhibiting the evolvement and
connection of the above-mentioned axiomatic and oper-
ational approach for measures of uncertainty, we can
integrate them with the measure-theoretic modeling
framework and information principles proposed in pre-
vious sections. We start with the relevant notations [22]
to present how an information entropy-based measure
for importance identification in a fault tree can be con-
structed with respect to epistemic uncertainty. Let

a. X = {Xi} (i = 1, 2, . . . , k) be the set of the basic
and initiating events, which constitute unique, cut
sets;

b. Y = {
Yj

}
(j = 1, 2, . . . , m) be the set of cut sets,

which contribute to the top event;
c. YTop be the algebraic expression of top event with

the following composite of these events,

YTop =
m∑

j=1

X
α1j

1 X
α2j

2 . . .X
αkj

k (11)

Where YTop (Xi) may be either the frequency or the
probability of the top event (a component). The index
αij is assigned as

αij =

⎧⎪⎪⎨
⎪⎪⎩

1, theith event is contained

in the jth cut set

0, otherwise
(12)

d. T = [
αij

]
k×m

(i = 1, 2, . . . , k; j = 1, 2, . . . ,

m) be the indicator matrix for the top event derived

from Equation (16), where the elements αij is the
characteristic value as denoted in Equation (12).
m is the number of cut sets in the top event and k

is the total number of basic events. Thus, the col-
umn sums in T give the order of each cut set, at the
same time, the row sums in T give the occurrence
times of each event. Furthermore, the character-
istic value αij is more likely to be the frequency
status of a certain fault during some statistical time
period. In this sense, the vector E = {Y, Poss (Y )}
can be taken on as the state space of fault mode and
F = {X, Poss (X)} can be the attribute space of
fault possibility. T is thus used as an observation
matrix for fault status.

Here the matrix-based representation T captures all
relevant information stated in the top event in terms of a
computationally general structure for measurement and
is convenient for understanding the relation between
unique basic events and their contributed cut sets [22].

4.2. Model descriptions of importance on basis of
axiomatic entropy model

The measure for importance identification that we
now put forth is mainly based on the possibilistic
entropy in terms of axiomatic approach, which is also
connected to operational one in an extended sense. The
default order of cut sets is assumed to be the possibilistic
preferential orderings (weak constraints). We assume
the acceptable choices Ai ∈ U, listed in the order of
their preference A1 � A2 � . . . � An, correspond to
the magnitude of their possibilisties [24, 32]. Then the
relevant definitions are constructed as follows.

Definition 1. When a basic or initiating event Xi occurs,
the uncertainty for possible combinations of cut sets
which include Xi (e.g. nonlinearity and insufficient
priori data) is reflected and quantified by the locally
conditional possibilistic entropy as follows:

H
(
Y
/
Xi

) =
m∑

j=1

[
π

(
Yj

/
Xi

) − π
(
Yj+1

/
Xi

)]
log2 j

(13)

Here π
(
Ym+1

/
Xi

) = 0, and αi ·
m∑

j=1

[
π

(
Yj

/
Xi

)
−π

(
Yj+1

/
Xi

)] = 1 should be satisfied to make the
definition feasible.

Definition 2. Informed by the locally condi-
tional entropy H

(
Y
/
Xi

)
and state-feature matrix
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T = {E,F} = [
αij

]
k×m

, the average amount of infor-
mation of fault characteristics according to unique cut
sets can be evaluated by the average conditionally pos-
sibilistic entropy as follows,

H
(
Y
/
X

) =
k∑

i=1

π (Xi) · H
(
Y
/
Xi

)
(14)

Which reveals the degree of coherence between
X = {Xi} andY = {

Yj

}
. Generally the more amount of

information that fault characteristics possesses, the less
entropy that the corresponding fault mode holds. Here
π (Xi) can be transformed from p (Xi) according to the
preference preservation principle [24] and Zadeh’s con-
sistency principle [40] in the following formulation. If
p (Xi) is also in a degressive sequence,

π (Xi) = i • p (Xi) +
k∑

l=i+1

p (Xl) (15)

By normalization, it follows that

π (Xi) = p (Xi)
k∑

i=1

[
k

max
l=i

p (Xl)

]

=

m∑
j=1

αij

k∑
i=1

(
k

max
l=i

αl

) =

m∑
j=1

αij

m∑
j=1

k∑
i=1

(
k

max
l=i

αlj

)
(16)

Definition 3. The possibilistic information-based
importance measure with regard to Xi is then defined
as

STi = H
(
Y
/
X

)
H

(
Y
/
Xi

) (i = 1, 2, . . . , k) (17)

The larger the index STi is, the more influential the
event Xi is. Applying Equation (13) and Equation (14)
into it, we get

STi =

k∑
i=1

π (Xi) · H
(
Y
/
Xi

)
H

(
Y
/
Xi

) =

k∑
i=1

{
π (Xi) ·

m∑
j=1

[
π

(
Yj

/
Xi

) − π
(
Yj+1

/
Xi

)]
log2 j

}
m∑

j=1

[
π

(
Yj

/
Xi

) − π
(
Yj+1

/
Xi

)]
log2 j

(18)

Among them, there is

π
(
Yj

/
Xi

) = p
(
Yj

/
Xi

)
k∑

i=1

[
k

max
l=i

p
(
Yj

/
Xi

)]

= αij

m∑
j=1

(
m

max
h=j

αih

) (19)

5. A case study of importance in FTA

5.1. Case descriptions and computations of
importance measures

To illustrate the application of the proposed method,
an importance identification for a fault tree model of
a specific nuclear power accidents prediction is pre-
sented here. As required by the possibilistic uncertainty,
the matrix-based risk assessment model put forward
by Iman [22] is utilized endowing the elements with
preferential orderings information. According to the
defense-in-depth design principle, a large accident in
a nuclear power plant, for example the accidents in a
high-level nuclear waste repository, will be the result
of combinations of multiple basic events (or cut sets).
Provided that there are 7 basic events leading up to
performance lapse, even critical failure of automatic
transmission in nuclear waste repositories, which are
illustrated as follows. X1 stands for release without tank
rupture, X2 stands for release with tank rupture, X3
stands for oil seal leak, X4 for oil seal failure unde-
tected, X5 for pressure too high, X6 for oil temperature
above limit and X7 stands for electronics fault, respec-
tively. Referring to [22], the final risk equation of the
top event is represented as follows,

YTop = X1X3X5 + X1X3X6

+ X1X4X5 + X1X4X6

+ X2X3X4 + X2X3X5

+ X2X4X5 + X2X5X6

+ X2X4X7 + X2X6X7 (20)

which consists of m = 10 cut sets and k = 7 events for
top events.

In accordance with parameters meanings explained
in Section 4.2, the investigated matrix is written as
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Table 4
Results for the proposed importance measure with respect to the

basic events

Issues X1 X2 X3 X4 X5 X6 X7

π (Xi) 0.1333 0.2000 0.1333 0.1667 0.1667 0.1333 0.0667
H

(
Y
/

Xi

)
0.5000 0.2203 0.3962 0.3429 0.2526 0.4399 0.1610

STi
0.6644 1.5079 0.8384 0.9688 1.3151 0.7551 2.0633

Table 5
A comparison of importance rankings

Approaches X1 X2 X3 X4 X5 X6 X7

I 7 2 5 4 3 6 1
II 6 1 7 4 2 3 5
III 6 3 7 4 2 1 5

Table 6
SSCC results among the different approaches

SSCC X1 X2 X3 X4 X5 X6 X7

Approach I 0.1429 1.5929 0.5095 0.7595 1.0929 0.3095 2.5929
Approach II 0.3095 2.5929 0.1429 0.7595 1.5929 1.0929 0.5095
Approach III 0.3095 1.0929 0.1429 0.7595 1.5929 2.5929 0.5095

T = [
tij

]
k×m

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

1 1 0 0 1 1 0 0 0 0

0 0 1 1 1 0 1 0 1 0

1 0 1 0 0 1 1 1 0 0

0 1 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

7×10

(21)

Applying Equation (16) and Equation (19), such
matrixes as [π (Xi)]7×1 and

[
π

(
Yj

/
Xi

)]
7×10 can be

achieved, respectively. After calculating the locally
conditional possibilistic entropy referred as Equa-
tion (13), we obtain the average possibilistic entropy
H

(
Y
/
X

) = 0.3322 by Equation (14). Thus the pos-
sibilistic entropy-based measures of importance with
regard to each basic event are achieved in turn, as pre-
sented in Table 4.

Table 5 shows the ranking results by the proposed
measures in this paper (Approach I) in comparison with
those of Iman’s (Approach II) [22], which presents the
example of FTA first, and in comparison with the newly
improved one named as moment independent sensitiv-
ity indicator by Borgonovo (Approach III) [3], which
reuses the same examples. Note that the value of uncer-
tainty importance measure in Approach II is actually

Fig. 4. A comparative illustration of the importance rankings.

Table 7
The SSCC matrix for the three importance measures presented in

Table 3

Correlation ratios Approach I Approach II Approach III

Approach I 1 0.6614 0.6946
Approach II 0.6614 1 0.4895
Approach III 0.6946 0.4895 1

(2.54E-5, 7.23E-5, 1.51E-5, 4.46E-5, 7.20E-5, 6.05E-
5, 2.60E-5) and that in Approach III is (0.11, 0.17, 0.09,
0.13, 0.18, 0.20, 0.11).

This comparison is then illustrated explicitly as
shown in Fig. 4.

5.2. Results Analysis

(1) Concordance Analysis. In order to measure
the agreement among the three sets of ranking results
by different approaches, we then compute the Savage
Score Correlation Coefficients (SSCC) [5] which are
more sensitive to concordance on the top ranks and are
defined as follows,

Si =
k∑

j=i

(
1/

j

)
, (22)

where i is the rank assigned to the ith order input
factor for the sample sets made of k factors. The com-
putation of SSCC involving k = 7 factors (events) gives
the following results, as shown in Table 6.

Furthermore, the classical correlation ratios among
the obtained SSCC are investigated as the following
matrix shown in Table 7. One takes notice that the rank-
ing results of Approach I in this discussion are in a
higher agreement with Borgonovo’s approach III, and
then with Iman’s approach II.

(2) Difference Discussions. We then turn our atten-
tion to the relatively concordant Approach I and
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Fig. 5. The research perspective of an expanded framework for mea-
surements of importance.

Approach III. The main difference from these two sets
of results lies in the evaluation of the most relevant
parameter. By possibilistic entropy-based measure of
Approach I X7 is the most influential event, and then
followed by X2 and X5 in turn. Meanwhile by moment
independent sensitivity indicator of Approach III, such
case is located as X6, then followed by X5 and X2.

The main reason related to such differences lie in the
possibilistic nature, and the premises of nested struc-
ture (see Section 3.1) as well as the frequency property.
Different from probabilistic uncertainty, the possibilis-
tic one is more likely to be handled in an ordinal setting
other than a ratio value. In the framework of possibility
theory, the marginal and joint distribution models based
on the rules of maximum and minimum are also distinct
from those in the framework of probability theory.

In addition, the curve of Approach I (see Fig. 4) is
much smoother than those other two, which implies that
the importance measure of possibilistic one produces
more conservative results, in comparison with that of
probabilistic one. The faults identified by Approach
I may involve more choices as a “soft” identification
under a certain expected level. In this sense, possibilistic
uncertainty acts as utility functions in decision theory
to some extent.

5.3. Discussions

(1) Future research. With the rapid development
of possibility theory, Dempster-Shafer theory of evi-
dence (DST) and imprecise probability theory, which
are all involved in the generalized information theory
(GIT) [24], the formulation of uncertainty functions,
are not limited to a certain axiomatic definition. The
work also paves the way to further research in an

expanded framework. As for the extensions of infor-
mation measures, the first line of research concerns
the construction of a general measure of information
based on the Shannon entropy models. A second line
of research is the exploration of Shannon entropy-like
model or Hartley entropy-like model in the spirit of a
general measure of information. Moreover, aggregation
of the discussed information measures for total uncer-
tainty is also in consideration. The research perspective
is demonstrated in Fig. 5.

In fact information-based uncertainty and
uncertainty-based information can be viewed as
complementary due to the dual notions of uncertainty
and information, and they can be expressed in two
expanded frameworks named as generalized uncer-
tainty theory (GUT) and generalized information
theory (GIT) respectively. The former framework,
drawn from fuzzy set theory is centered on a general-
ized constraint on values of various given variables,
and is based on the notions of granularity and linguistic
variables. The latter is characterized by gradually
generalizing non-additive measures of various types
and then, fuzzifying these measures further. It is
predicted that the categories of generalized constraints
manifested in GUT can thus guide the research in GIT.

(2) Extension to evidence space and connection
with the belief function. The compatibility of DST
with some special theories makes the current approach
applicable to the evidence space, connecting with cor-
responding belief function. In general, we can say that
the classical probability theory and possibility theory
are subsets of the DST, respectively in accordance with
the singletons and consonant focal elements. As a kind
of upper probability, the possibility measure acts as
not only a generalization of the probability measure,
but also a certain plausibility measure [24, 25]. Such
interrelationship is a mathematical superiority to appli-
cations of importance analysis involving various types
of uncertainty.

Since the U-uncertainty is well established as a GH,
its further generalization to DST is then theoretically
fairly straightforward and is based on the following
simple facts. First of all, the expression of Equation
(8) is just like a weighted average of Hartley measure
for all focal subsets. This view is consistent with the
view of a body of evidence as a convex combination of
sets. In second point, the weights as (ri − ri+1) are val-
ues of the BPA function mi. The functional in Equation
(7) is thus viewed as GH (m) by satisfying the expan-
sibility requirement. No matter what the permutation
values of mi are, for subsets with equal cardinalities,
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GH (m) holds invariant in accord with the symmetry
requirement in DST.

Furthermore, when all focal subsets are singletons,
the BPA function mi actually acts as a probability dis-
tribution on U. Hence GH (m) = 0 is derived for the
probabilistic bodies of evidence, which explains the
bound condition is then 0 ≤ GH (m) ≤ log2 |U|. On
the other hand, when all focal subsets are nested or
consonant, Pl and Bel in DST are the same functions
as Poss and Nec in possibility theory respectively by
possibilistic bodies of evidence. It follows from these
facts that the importance measure discussed under pos-
sibilistic uncertainty could be investigated in evidence
space by a specific belief function. When handling a
mixture of input parameters due to incomplete data,
the range of each input can be described in a specific
confidence interval [Bel (A) , Pl (A)] [12], which means
more information based on empirical knowledge may
be elicited in an assessment. As a consequence, these
generalizations play a part in such developing levels
of uncertainty modeling as “Formalization - Calculus -
Measurement - Methodology” [24].

6. Conclusions

This paper discusses the challenges confronted
during the representation and treatment of epis-
temic uncertainties in reliability and safety assessment
to overcome the deficiency in handling imprecise
information encountered by probabilistic importance
measures by introducing possibilistic measurements in
risk-informed decision-making. According to the mea-
surability of possibilistic uncertainty-based measures
and feasibility of generalized information measures, an
importance measure of fault tree based on possibilistic
information entropy is proposed and its construction
and implementation are discussed, addressing the fol-
lowing points:

– The fuzzy-measure theoretical ground integrating
intuitive interpretations of epistemic uncertainty
with possibilistic measurements;

– The information-measure quantification approa-
ches by means of the axiomatic treatment and oper-
ational representation;

– The bipolar semantic interpretations and dual
uncertainty measures in the modeling framework
and construction principles;

– A comprehensive case study along with the con-
cordance analysis and difference discussions.

The numerical example of importance computation
in a fault tree indicates that from the viewpoint of
intuitive backgrounds and information semantics, pos-
sibilistic uncertainty can be regarded as the expected
value of information identifying the acceptability of
events in the range of fuzzy domain. In this respect, the
possibility assignments are of close relationship of the
preferential orderings and are similar to utility functions
used in decision theory.

The proposed method in this paper is applicable to
situations wherein events (or propositions) are impre-
cise in nature, or necessary information is insufficient
for complex or fuzzy systems and relations. Moreover
the proposed measure for importance identification is
not only aiding in identifying the weakness in a sys-
tem, but also assists in system control, test, equipment
diagnosis, and optimal configuration.
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