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Abstract. Reliability Based Multidisciplinary Design Optimization (RBMDO) has re-
ceived increasing attention to reach high reliability and safety in complex and coupled
systems. In early design stage of such systems, however, there are insufficient data to
precisely construct the probability distributions required by the RBMDO and consequently
RBMDO can not be carried out effectively. To deal with this case, the present work pro-
poses Possibility Based Multidisciplinary Design Optimization (PBMDO) and a method
of PBMDO within the framework of the Sequential Optimization and Reliability Assess-
ment (PBMDO-SORA). The proposed method enables designers to solve MDO problems
with insufficient information on the uncertainties associated with design inputs, and ef-
ficiently decreases the computational demand. The efficiency of the proposed method is
illustrated with a mathematical example and an engineering design.
Keywords: Sequential optimization and reliability assessment, Multidisciplinary design
optimization, Possibility based multidisciplinary design optimization

1. Introduction. In the last two decades, the consideration of uncertainty has been a
focus of engineering design for complex and coupled systems. Reliability Based Mul-
tidisciplinary Design Optimization (RBMDO) has received increasing attention because
of requirements for high reliability and safety in complex and coupled systems [1-8]. In
[8], a Sequential Optimization and Reliability Assessment (SORA) method for RBMDO
was proposed. SORA is based on the idea of decoupling reliability analysis from design
optimization [9]. By using the MPP obtained from the previous cycle, the constraint in
deterministic optimization is modified to make sure the MPP of current cycle fall into
the feasible region. After solving the deterministic optimization, a new design point is
obtained and followed by reliability assessment to check up the feasibility of each prob-
ability constraint at the new design point. Generally, the whole process of solution will
converge in a few cycles.

However, in the early design stage of complex and coupled systems, due to time, en-
vironment and human, etc, there are insufficient data to precisely construct probability
distributions which are basics in RBMDO. When distributions of variables are constructed
using the limited available data, the Reliability based Design Optimization (RBDO) may
lead to an unsafe design [10]. Results will be even worse for design with multiple disci-
plines. Possibility based Design Optimization (PBDO) is powerful to deal with problems
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in which there are insufficient data about uncertainty [10-18]. Possibility approach can
deal with uncertainty with insufficient data by defining a fuzzy variable corresponding to
the limited available data [12,16,17]. If there are insufficient data to precisely construct
probability distributions, it is recommended to use Possibility Based Multidisciplinary
Design Optimization (PBMDO) instead of RBMDO. PBMDO under the framework of
the SORA (PBMDO-SORA) is proposed in this paper. This method can efficiently solve
MDO problems in which uncertainty in design inputs is described with insufficient data,
and also can obviously decrease computational demand.
This paper is organized as follows. In Section 2, PBDO and Multidisciplinary Design

Optimization (MDO) are briefly reviewed. In Section 3, the formulation of PBMDO
discussed in this paper is provided. In Section 4, the proposed method of PBMDO-SORA
is discussed in detail, including the strategy, procedure and formulation. In Section 5, a
mathematical example and an engineering design are utilized to illustrate the efficiency
of the proposed method, followed by the conclusions given in Section 6.

2. A Briefly Review of PBDO and MDO.

2.1. PBDO. To deal with the case of insufficient information about uncertainty in single-
discipline design, PBDO has recently been introduced in optimization design. PBDO
method has two obvious computational advantages than RBDO [10-15]: first, when there
are only a few data which can not be used to precisely construct probability distributions
for design variables, the fuzzy design variables can be more easily defined than stochastic
variables; second, fuzzy operations are simpler than the case of probability, especially
when there are a number of design variables.

2.1.1. Formulation of PBDO. The mathematical formulation of PBDO is

min
d′,X′N

f
(
d′,X′N ,P′N

)
s.t. Π(Gi(d

′,X′,P′) > 0) ≤ αt, i = 1, 2, · · · , n

d′L ≤ d′ ≤ d′U , X′N,L ≤ X′N ≤ X′N,U

(1)

where d′ is a vector of deterministic design variables, X′ denotes a vector of fuzzy design
variables. P′ refers to a set of fuzzy parameters. X′N are maximal grade points of fuzzy
design variables. The maximal grade point is defined as: X′N = {x′|max{ΠX′(x′)}}. f(·)
represents the objective function. Π(G(·) > 0) is the possibility of failure with the failure
mode defined as G(d′,X′,P′) > 0, and G(·) is performance function. αt is the target
possibility of failure. n is the total number of constraints. “L” and “U” are lower and
upper bounds, respectively [11].

2.1.2. Performance measure approach (PMA) in PBDO. The formulation of PBDO with
PMA [12,13] is

min
d′,X′N

f
(
d′,X′N ,P′N

)
s.t. GΠi

(d′,X′,P′) ≤ 0, i = 1, 2, · · · , n

d′L ≤ d′ ≤ d′U , X′N,L ≤ X′N ≤ X′N,U

(2)

where GΠi
(d′,X′,P′) denotes the value of the ith performance function at its Most Pos-

sible Point (MPP, from now on, MPP means Most Possible Point). The constraint
GΠi

(d′,X′,P′) ≤ 0 is equivalent to Π(Gi(d
′,X′,P′) > 0) ≤ αt [12]. The explanations

of the symbols in this formulation are same as those in Section 2.1.1.
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The fuzzy variables and parameters are assumed non-interactive. The membership
function of each fuzzy variable and parameter satisfies three properties: unity; strong
convexity; boundedness (detail definitions can be found in [12]). Evaluation of the possi-
bility constraints needs a fuzzy analysis using PMA [12,13], which is formulated as

max
U

G(U)

s.t. ∥U∥∞ ≤ 1− αt

(3)

where U is the vector of standard fuzzy variables and parameters transformed from those
fuzzy ones in X space. A standard fuzzy variable has the isosceles triangular membership
function as follows:

ΠU(u) =

{
u+ 1 −1 ≤ u ≤ 0
1− u 0 ≤ u ≤ 1

= 1− |u| , |u| ≤ 1 (4)

The transformation is

U =

{
ΠX(x)− 1 x ≤ XN

1− ΠX(x) x > XN (5)

where ΠX(·) is the membership function of fuzzy variable X. It should be noted that in
this paper all fuzzy variables and parameters are assumed to be non-interactive.

2.2. MDO. The mathematical formulation of MDO is

min f(X′′,Y′′)

s.t. g(i)(X′′
s,X

′′
i,Y

′′
•i) ≥ 0

h(i)(X′′
s,X

′′
i,Y

′′
•i) = 0

Y′′
i• = (y′′ij, j ̸= i) = Y′′

i•(X
′′
s,X

′′
i,Y

′′
•i)

i = 1, 2, · · · , nd

(6)

where X′′ = (X′′
s,X

′′
1,X

′′
2, · · · ,X′′

nd) is a vector of design variables. X′′
s is a vector

of sharing variables, X′′
i are local input variables to discipline i, and nd is the total

number of disciplines. Y′′ = (Y′′
i•, i = 1 ∼ nd) represents a vector of linking variables.

Y′′
i• = (y′′ij; j ̸= i, j = 1 ∼ nd) is a vector of output linking variables obtained from the

ith discipline, and y′′ij is the output of discipline i and input of discipline j. Y′′
•i is the

input to the ith discipline. f(·) is the objective function. g(i)(·) and h(i)(·) are inequality
and equality constraint functions in discipline i.

In RBMDO, uncertainties with variables are characterized with probability density
functions. While in PBMDO, because of insufficient data, all the uncertainties with
variables are characterized with membership functions based on possibility theory.

3. PBMDO. The mathematical formulation of PBMDO discussed in this paper is

min
DV

f(ds,d,X
N
s ,X

N ,PN ,YN)

s.t. Π(G(i)(ds,di,Xs,Xi,Pi,Y•i) > 0) ≤ αt

g(i)(ds,di,X
N
s ,X

N
i ,P

N
i ,Y

N
•i) ≤ 0

i = 1, 2, · · · , nd
dL
s ≤ ds ≤ dU

s , d
L ≤ d ≤ dU

XN,L
s ≤ XN

s ≤ XN,U
s , XN,L ≤ XN ≤ XN,U

DV = {ds,d,X
N
s ,X

N}
where

(7)
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Y = (yij; i, j = 1 ∼ nd, j ̸= i)

yij = yij(ds,di,Xs,Xi,Pi,Y•i)

where DV denotes design variables. ds denote sharing deterministic variables which have
no uncertainty; d = {d1,d2, . . . ,dnd}, and di are deterministic variables in discipline i.
nd is total number of disciplines. Xs are sharing fuzzy variables with the maximal grade
points as XN

s ; X = {X1,X2, · · · ,Xnd} is a vector composed of local fuzzy variables of
each discipline, and XN is its maximal grade point. P = {P1,P2, · · · ,Pnd} is a vector
composed of fuzzy parameters of each discipline, and PN is its maximal grade point. Y
denotes a vector of linking variables, yij is output of discipline i and input to discipline j.
Π(G(i) > 0) ≤ αt is possibility constraint in discipline i with the failure mode defined as
G(i)(ds,di,Xs,Xi,Pi,Y•i) > 0, and G(i)(·) is performance function. g(i) ≤ 0 is common
constraint in discipline i.
Directly solving the PBMDO problem, there are three nested loops: minimizing the

objective function in the outer loop; performing possibility analysis to check feasibilities of
possibility constraints in the middle loop; performing multidisciplinary analysis to obtain
consistency among multiple disciplines. To efficiently solve PBMDO problems, PBMDO
within the framework of SORA (PBMDO-SORA) is proposed in the next section.

4. PBMDO-SORA. In this section, PBMDO-SORA is discussed in detail including
strategy, procedure and formulations.

4.1. Strategy of PBMDO-SORA. For efficiently solving PBMDO problems, two tech-
nologies are adopted.
(1) PMA. PMA is more efficient than evaluating the actual reliability in RBDO [8,9],

and PMA is also found efficient for PBDO [10,12-15]. Hence it is adopted in PBMDO.
(2) SORA. In this paper, with the idea of SORA, PBMDO is solved by series of cycles

of deterministic MDO solution and possibility analysis. In each cycle, possibility analysis
follows the deterministic MDO.

4.2. Procedure of PBMDO-SORA. The PBMDO-SORA contains four basic steps:

Step 1: Set the initial values for design variables as d
(0)
s , d(0), X

N,(0)
s , XN,(0); k = 1.

Step 2: Solve the deterministic MDO. The results are optimal value of each determin-

istic variable d
(k)
s , d(k) and the maximal grade point of each fuzzy variable X

N,(k)
s , XN,(k)

in the kth cycle. In the first cycle, the value of MPP in each deterministic constraint

relevant to the possibility constraint is set to be equal to X
N,(0)
s , XN,(0), PN . From the

second cycle, constraints are modified with the MPPs of previous cycle when possibility
constraints are not all satisfied and the value of objective function is not stable.
Step 3: Perform possibility analysis. First of all, each fuzzy variable and parameter

should be transformed into standard fuzzy ones using Equation (5) with its maximal grade
point. The results of possibility analysis are MPP and value of performance function at the
MPP of each possibility constraint. In the formulation of possibility analysis, consistencies
among disciplines are treated as extra constraints similar as in [8].
Step 4: Check convergence. If constraints are all satisfied and the value of objective

function is stable (G(i) ≤ 0, i = 1 ∼ nd; |f(k) − f(k − 1)| ≤ ε, where ε is an arbitrary
small positive value), stop the process of solution; otherwise, set k = k+1 and go to Step
2 with the MPPs obtained in Step 3.
If possibility constraint Π(G(i) > 0) ≤ αt is not satisfied in Cycle k − 1 which means

that the value of performance function at its MPP satisfies G(i) > 0, then the MPP(
X

∗,(i),(k−1)
s , X∗,(i),(k−1), P∗,(i),(k−1)

)
obtained from possibility analysis in Cycle k − 1 will

be used to construct deterministic constraint in deterministic MDO for Cycle k. To make
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sure the feasibility of the possibility constraint, its MPP should fall into the deterministic
feasible region. Let S be the shift vector. The shift is based on the idea of SORA in [9]
as:

S(i)
s = XN,(k−1)

s −X∗,(i),(k−1)
s

S
(i)
j = X

N,(k−1)
j −X

∗,(i),(k−1)
j

i, j = 1 ∼ nd

(8)

where S
(i)
s , S

(i)
j are shift vectors of Xs, Xj in discipline i, respectively. X

∗,(i),(k−1)
s ,

X
∗,(i),(k−1)
j are MPPs of Xs, Xj in discipline i of the (k − 1)th cycle, respectively.

The values of parameters of MPP directly substitute P in function G(i). The determin-
istic constraint in the kth deterministic MDO is as:

G(i)(ds,di,X
N
s − S(i)

s ,XN
i − S

(i)
i ,P

∗,(i),(k−1)
i ,Y

∗,(i)
•i ) ≤ 0 (9)

4.3. Formulations in PBMDO-SORA. The mathematical formulations of determin-
istic MDO and possibility analysis mentioned in the previous section will be provided and
discussed in the following subsections.

4.3.1. Deterministic MDO of the kth cycle. The deterministic MDO of the kth cycle is

min
DV

f(ds,d,X
N
s ,X

N ,PN ,YN)

s.t. G(i)(ds,di,X
N
s − S(i)

s ,XN
i − S

(i)
i ,P

∗,(i),(k−1)
i ,Y

∗,(i)
•i ) ≤ 0

g(i)(ds,di,X
N
s ,X

N
i ,P

N
i ,Y

N
•i) ≤ 0

i = 1 ∼ nd

yNij = yij(ds,di,X
N
s ,X

N
i ,P

N
i ,Y

N
•i) i, j = 1 ∼ nd; j ̸= i

y
∗,(i)
jm = yjm(ds,dj,X

N
s − S(i)

s ,XN
j − S

(i)
j ,P

∗,(i),(k−1)
j ,Y

∗,(i)
•j )

i, j,m = 1 ∼ nd; m ̸= j

dL
s ≤ ds ≤ dU

s , d
L ≤ d ≤ dU

XN,L
s ≤ XN

s ≤ XN,U
s , XN,L ≤ XN ≤ XN,U

DV = {ds,d,X
N
s ,X

N ,YN ,Y∗}

(10)

where YN =
{
yNij ; i, j = 1 ∼ nd, j ̸= i

}
are maximal grade points of Y. Y∗ denotes

a vector of linking variables at MPPs, corresponding to possibility constraint. Y
∗,(i)
•i

corresponds to the possibility constraint in discipline i. G(i) ≤ 0 is the deterministic

constraint corresponding to the possibility constraint in discipline i. S
(i)
s , S

(i)
i , S

(i)
j are

shift vector of Xs, Xi, Xj in discipline i, respectively. P
∗,(i),(k−1)
i are MPP of Pi in

discipline i in the (k − 1)th cycle.
The equality constraints for achieving consistency among disciplines are modified with

X
∗,(i),(k−1)
s , X

∗,(i),(k−1)
j , P

∗,(i),(k−1)
j as y

∗,(i)
jm = yjm

(
ds,dj,X

N
s − S

(i)
s ,XN

j − S
(i)
j ,P

∗,(i),(k−1)
j ,

Y
∗,(i)
•j

)
i, j,m = 1 ∼ nd; m ̸= j. S

(i)
s , S

(i)
j are shift vectors obtained from Equation

(8) relevant to Xs, Xj in discipline i. X
∗,(i),(k−1)
j , P

∗,(i),(k−1)
j are MPPs obtained in the

(k − 1)th cycle corresponding to Xj, Pj in discipline i.
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4.3.2. Possibility analysis of the kth cycle. The possibility analysis of the kth cycle using
PMA is

max
DV

G(i)(dk
s ,d

k
i ,U

(i),k
s ,U

(i),k
i ,U

(i),k
Pi ,Y

(i)
•i )

s.t. ||(U(i),k
s ,U(i),k,U

(i),k
P )||∞ ≤ 1− αt

y
(i)
jm = yjm(d

k
s ,d

k
j ,U

(i),k
s ,U

(i),k
j ,U

(i),k
Pj ,Y

(i)
•j )

j,m = 1 ∼ nd; m ̸= j

DV = {U(i),k
s ,U(i),k,U

(i),k
P ,Y(i)}

i = 1 ∼ nd

(11)

where dk
s , d

k
i , d

k
j are optimal values of deterministic variables obtained after solving de-

terministic MDO. The superscript k indicates variables in the kth cycle, and “(i)” denotes

variables and parameters corresponding to the possibility constraint in discipline i. U
(i),k
s ,

U
(i),k
i , U

(i),k
Pi , U

(i),k
j , U

(i),k
Pj are respectively transformed from Xs, Xi, Pi, Xj, Pj. Y(i)

is linking variables at MPP, corresponding to possibility constraint in discipline i. Y
(i)
•i ,

a vector of linking variables, is input to discipline i. U(i),k =
{
U

(i),k
1 ,U

(i),k
2 , · · · ,U(i),k

nd

}
,

U
(i),k
P =

{
U

(i),k
P1

,U
(i),k
P2

, · · · ,U(i),k
Pnd

}
.

It is implied that the performance function includes all design input because of the
existences of linking variables. In Equation (11), the first constraint includes all fuzzy
design inputs. The consistency among disciplines is treated as extra constraint.

The results of possibility analysis are MPP
(
U

∗,(i),(k)
s , U∗,(i),(k), U

∗,(i),(k)
P

)
and value

of performance function at MPP G(i), i = 1 ∼ nd. The MPP in the X-space
(
X

∗,(i),(k)
s ,

X∗,(i),(k), P∗,(i),(k)
)
can be obtained by the inverse Equation (5) based onU

∗,(i),(k)
s ,U∗,(i),(k),

U
∗,(i),(k)
P .

5. Numerical Examples. In this section, a mathematical example and an engineering
design are used to demonstrate the proposed method. The method proposed in this paper
and the RBMDO-SORA are compared based on the obtained results. The efficiency of
the proposed method is demonstrated through results.

5.1. Mathematical example for PBMDO. The mathematical example that is slightly
modified from [8] is given as:

min
(ds,d1,d2)

v
(
d,xN

)
=

(
ds + xN

s

)2
+ d21 + d22

s.t. Π{G1(d,x) = x1 − ds − xs − d1 − d2 > 0} ≤ αt

Π{G2(d,x) = ds + xs − 2d1 + d2 − x2 > 0} ≤ αt

0 ≤ ds, d1, d2 ≤ 5

(12)

where the triangular memberships of xs, x1, x2 are (−0.9, 0, 0.9), (3.5, 5, 6.5), (0.7, 1, 1.3),
respectively. It should be noted that in this problem xs, x1, x2 are fuzzy parameters
because their maximal grade points are fixed. The problem is decomposed into two
subsystems as in [8] in Figure 1.
The results of RBMDO with xs ∼ N(0, 0.3), x1 ∼ N(5, 0.5), x2 ∼ N(1, 0.1) solved by

RBMDO-SORA and PBMDO are listed in the Table 1.
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Figure 1. Mathematical problem

Table 1. Results of RBMDO-SORA and PBMDO-SORA

Design Variables Obj. Number
ds d1 d2 v G1 G2 n1 n2 k

RBMDO
2.2497 2.2498 2.2498 15.1843 0 –0.0513 451 635

(β = 3)
PBMDO

2.4326 2.5318 2.4326 18.2445 0 −1.7764× 10−15 354 354 3
(αt = 0.0013)
(αt = 0.005) 2.4303 2.5273 2.4303 18.2005 0 −1.7764× 10−15 354 354 3
(αt = 0.0001) 2.4333 2.5332 2.4333 18.2588 0 −2.6645× 10−15 354 354 3

The start point is (0, 0, 0). The second row shows results from [8]. n1 is the number of
discipline analysis for subsystem 1 and n2 is for the other. When the target possibility
of failure equals to the target probability of failure αt = 0.0013 = 1 − Φ(β) = 1 − Φ(3),
PBMDO provides a more conservative design. The reason is: since there is insufficient
data to precisely construct probability distributions, membership functions are used based
on possibility theory; this causes the difference between possibility analysis and probability
analysis. In the possibility analysis, the constraint is a hypercube while in probability
analysis is a hyper-sphere. The number of discipline analysis in PBMDO-SORA is in
the same magnitude as that in RBMDO-SORA. From the values of objective function in
the fifth column, the lower the target possibility of failure is, the more conservative the
design will be. All possibility constraints are satisfied at each optimal design since values
of performance functions at the MPPs are all not larger than zeros. PBMDO-SORA
efficiently solves this problem with different target possibility of failure in three cycles.

5.2. Design of a pressure vessel. The example of pressure vessel design showed in
Figure 2 is derived from [19]. The design variables are radius (R), length (L) and thickness
(T ). There are two parameters: internal pressure (P ) and allowable tensile strength of
the material (St). The objective is to maximize the internal volume while minimize the
weight. In this paper, this problem is modified into an MDO problem.

The pressure vessel is designed by two design groups, and the coupled variables are
thickness (T ), length (L) and radius (R). The multidisciplinary systems and notations
are given in Figure 3. T , R and L are all fuzzy variables, P and St are fuzzy parameters.
Table 2 shows the membership functions of design variables and parameters.

Sharing design variables: ds = ϕ. Sharing fuzzy variables: ϕ.
Subsystem 1: fuzzy variable isX1 = {T}; input linking variables areY21 = {y21,1, y21,2} =
{R,L}; output linking variable is Y12 = {y12} = {T}; output is Z1 = {v1}, v1 =
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4
3
π
(
TN + yN21,1

)3
+ π

(
TN + yN21,1

)2
yN21,2 −

[
4
3
π
(
yN21,1

)3
+ π(yN21,1)

2yN21,2

]
. In this subsystem,

the objective is to minimize the weight, which is equivalent to minimize the relevant
volume. The possibility constraints in Subsystem 1 are those:

Π{G11 = 5T − y21,1 > 0} ≤ αt

Π{G12 = T + y21,1 − 40 > 0} ≤ αt

Figure 2. Pressure vessel

Figure 3. MDO problem of pressure vessel

Table 2. Membership functions of design variables and parameters

Variables or Maximal
Deviation

Membership
Low bound Up bound

parameters grade point function
of maximal of maximal
grade point grade point

R 0.03 Triangular 0.1 36
T 0.03 Triangular 0.5 6.0
L 0.03 Triangular 0.1 140
P 3.89 1.167 Triangular
St 40 12 Triangular

Subsystem 2: fuzzy variables are X2 = {R,L}; input fuzzy parameters are P = {P, St};
input linking variable isY12 = {y12} = {T}; output linking variables areY21={y21,1,y21,2}
= {R,L}; output is Z2 = {v2}, v2 = 4

3
π
(
RN

)3
+ π

(
RN

)2
LN . In this subsystem, the
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objective is to maximize internal volume. The possibility constraints in Subsystem 2 are
those:

Π

{
G21 =

PR

y12
− St > 0

}
≤ αt

Π{G22 = L+ 2R + 2y12 − 150 > 0} ≤ αt

The whole objective, v, is to minimize v1 − v2. To compare PBMDO with RBMDO,
the results of PBMDO and RBMDO with T ∼ N(µT , 0.01), R ∼ N(µR, 0.01), L ∼
N(µL, 0.01), P ∼ N(3.89, 0.389), St ∼ N(40, 4) are listed in Tables 3 and 4.

Table 3. Design of PBMDO and RBMDO

TN RN LN v v1 v2 n1 n2 k
PBMDO

6.0000 33.0538 71.7427
–2.0177 1.9575 3.9752

2484 2484 4
αt = 0.0013 ×105 ×105 ×105

αt = 0.005 6.0000 33.1353 71.5802
–2.0310 1.9619 3.9929

2193 2193 3×105 ×105 ×105

αt = 0.0001 6.0000 33.0274 71.7953
–2.0134 1.9560 3.9694

2464 2464 4×105 ×105 ×105

µT µR µL v v1 v2 n1 n2 k
RBMDO

5.2475 34.7100 69.9949
–2.6187 1.7822 4.4009

3428 3428 5
β = 3 ×105 ×105 ×105

Table 4. Values of performance functions at relevant MPPs

G11 G12 G21 G22

PBMDO
–2.8740 –0.8863 −3.5527× 10−15 0

αt = 0.0013
αt = 0.005 –2.9562 –0.8050 −3.5527× 10−15 0
αt = 0.0001 –2.8474 –0.9126 0 0

G11 G12 G21 G22

RBMDO
–8.3194 1.8666× 10−11 −2.7477× 10−11 8.6914× 10−11

β = 3

Table 3 lists the design, corresponding objective function values and the number of
disciplinary analysis of PBMDO at different possibility of failure and RBMDO. Same
as the results in the mathematical problem, when the target possibility of failure equals
to target probability of failure, PBMDO provides a more conservative design than that
of RBMDO. But the number of discipline analysis in PBMDO-SORA is in the same
magnitude as that in RBMDO-SORA. Meanwhile, the lower the target possibility of
failure is, the more conservative the optimal design will be. The PBMDO-SORA efficiently
solves this problem with different target possibility of failure in a few cycles.

Table 4 shows value of performance function of each possibility constraint at corre-
sponding Most Possibility Point (MPP) and that of each probability constraint at the
Most Probability Point (MPP). At each optimal design point, the values of performance
function of each possibility constraint at its MPP are all not larger than zeros which indi-
cates that all possibility constraints are satisfied. At the optimal design point of RBMDO,
the values of G12 and G22 at their MPPs are almost equal to zeros which indicates that
the corresponding probability constraints are active.
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6. Conclusions. If sufficient data is not available to construct probability distributions,
it is recommended to use PBMDO instead of RBMDO. A method, PBMDO-SORA, is
proposed in this paper. This method can efficiently solve MDO problems in which un-
certainty in design variables is described with insufficient data, and can also decrease the
computational demand. In this method, the PBMDO problem is solved by sequential de-
terministic MDO and possibility analysis. The deterministic MDO is reconstructed with
the MPP obtained in the previous cycle to improve the feasibilities of possibility con-
straints. After solving the deterministic MDO, possibility analysis is applied to analyze
the feasibility of each possibility constraint at the new design point. Based on this, in
each cycle the MDO solution and possibility analysis are sequential but not nested.
As illustrated in the demonstrative examples, PBMDO-SORA can efficiently solve PB-

MDO problems in a few cycles. When target possibility of failure is set to be same as
probability of failure, PBMDO provides more conservative design. The reason is: since
there is insufficient data to precisely construct probability distributions, membership func-
tions are used based on possibility theory; this causes the difference between possibility
analysis and probability analysis. In the possibility analysis, the constraint is a hyper-
cube while in probability analysis is a hyper-sphere. For a lower target possibility of
failure, the result will be more conservative. However, the number of discipline analysis
in PBMDO-SORA is in the same magnitude as that in RBMDO-SORA.
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