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Abstract: Turbine disk is a key component of aero-engine
and the failure of turbine disk will lead to disastrous
consequences, making the structural reliability analysis
for the turbine disk as an urgent issue. Taking the turbine
disk as the case study, this paper will compare two non-
probabilistic structural reliability analysis methods of
imprecise structural reliability analysis and interval struc-
tural reliability analysis aiming at providing a more pro-
found understanding about the theoretical system of
imprecise probability theory. Moreover, according to the
comparisons, this paper will predict the prospects or the
works should to be done for the widely application of
imprecise probability theory.
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1 Introduction

There are more and more stringent requirements on the
safety of aero-engines due to the growing technical and
environmental complexity. This has stimulated the
research and development of reliability analysis meth-
ods and assessment procedures for aero-engines [1].
Turbine disk is a key component of aero-engine and
the failure of turbine disk may lead to disastrous con-
sequences, thus structural reliability analysis for the
turbine disk is an urgent issue. In accordance with the

theory of mathematical statistics, structural reliability
analysis method can be classified as probabilistic struc-
tural reliability analysis method and non-probabilistic
structural reliability analysis method [2]. Probabilistic
structural reliability analysis method adopts probability
theory to quantify information about uncertainty
aspects and it is based on deterministic parameters
and models. Specifically, strength, stiffness, geometry,
loading as well as other characteristic parameters rele-
vant to structural reliability are described by a set of
stochastic variables that are grouped into one vector.
Then a particular probability distribution is assigned to
each of these variables [3]. As we know, probability
theory is constructed based on a massive statistical
data, hence probabilistic structural reliability analysis
methods are very effective when enough statistical data
related to structural system are available. However, the
problem of lack of data is often encountered in the
process of structural reliability analysis of complex sys-
tems [4–6]. For example we may not have enough data
or information to determine the influence of spatial
temperature variation on the reliability of artificial satel-
lite in the early stage of the development. In the case of
the turbine disk, its structure, loading conditions as well
as working environments are very complicated. Under
the cases structural reliability analysis models as well as
their parameters are difficult to be uniquely determined.
Meanwhile it is unreliable to consider any specific dis-
tribution for the variable [7–9]. Probabilistic structural
reliability analysis methods are no longer applicable for
these systems with small samples or few statistical data.
Thus, non-probabilistic structural reliability analysis
methods are proposed.

Structural reliability analysis methods based on inter-
val analysis [10], Dempster-Shafer theory [11], fuzzy set
theory [12, 13] are collectively known as non-probabilistic
structural reliability analysis method. All of these non-
probabilistic structural reliability analysis methods
assume reliability indexes can be quantified with a
bound rather than using a deterministic value. Interval
structural reliability analysis assumes unknown para-
meters of limit state function vary in intervals and adopts
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a non-probabilistic structural reliability index η to char-
acterize structural reliability [10]. Dempster-Shafer theory
is a mathematical approach to dealing with evidence
coming from different sources and arriving at a degree
of belief which is represented as a belief function [11].
Fuzzy reliability theory considers the probabilities of vari-
ables can be treated as fuzzy numbers and possibility can
be used to quantify the uncertainty instead of probability
measures [12, 13]. In addition to non-probabilistic struc-
tural reliability analysis method, structural reliability
analysis based on imprecise probability theory (so called
as imprecise structural reliability analysis) is proposed in
recent years and it has received much attentions. The
mathematical theory of imprecise probability theory is
established on the basis of behavioral interpretation and
the imprecise reliability models are constructed by con-
sidering the upper and lower previsions of gambles [14].
Regardless whether the method is based on interval ana-
lysis, Dempster-Shafer theory, fuzzy set theory or impre-
cise probability theory, all non-probabilistic structural
reliability analysis methods have to balance the quantifi-
cation of objective uncertainties and the quantification of
subjective uncertainties. Study on imprecise structural
reliability analysis is still in its early stage, related the-
ories and methods are not mature and engineering appli-
cations are rarely reported. Despite all this, the
advantages of imprecise probability theory have gained
the popularity in the research community. Among these
non-probabilistic structural reliability analysis methods,
imprecise structural reliability analysis method shares a
lot of similarities with interval structural reliability ana-
lysis method. In this regard, taking the turbine disk as the
study object, this paper will make a comparison of these
two non-probabilistic structural reliability analysis meth-
ods aiming at providing a much more profound under-
standing about the theoretical system of imprecise
probability theory and predicting the prospects or the
works should to be done for the widely application of
imprecise probability theory.

The remainder of this article is organized as fol-
lows. Some basic knowledge of imprecise structural
reliability analysis and interval structural reliability
analysis are respectively given in Sections 2 and 3.
Immediately following, detailed comparisons of the
two non-probabilistic structural reliability analysis
methods on aspects such as modeling ideas, model
structures, precision, etc. are introduced in Section 4.
In Section 5 we consider non-probabilistic structural
reliability analysis for the turbine disk as the project
example to verify the comparisons. Conclusions are
dawn in Section 6.

2 Imprecise structural reliability
analysis method

2.1 Basic concepts of imprecise probability
theory

The theoretical framework of imprecise probability theory
is proposed by Walley [14]. As we know, in probability
theory all probability distributions are constructed on the
discussion of events. Similarly, imprecise probability
models are constructed on the discussion of ‘gambles’
which are equal to the ‘events’ in classical probability
theory. According to [15], a gamble is a bounded real-
valued function defined on domain Ω. The gamble can be
interpreted as a reward whose value depends on the
uncertain state ωi, i= 1, . . . , n. If you accept the gamble
X, then at some later time the true state ωk will be
determined and you will receive the reward X ωkð Þ in
units of utility. Three fundamental principles, that are
avoiding sure loss, coherence and natural extension, are
constructed by considering subjective rationality. Here,
we just give some basic definitions which are quoted in
the field of reliability engineering and for more detailed
information please refer [14].

Definition 2.1.1 P Xð Þ, P Xð Þ� �
are lower and upper prob-

abilities of gamble X. A lower probability P Xð Þ is the
infimum of all values P Xð Þ may take while the upper
probability P Xð Þ is the supremum of the same gamble.
It’s worth mentioning that the lower and upper prob-
abilities should be correlative because they are deter-
mined under same situations. As we can see, the lower
and upper probabilities can just represent the probabil-
ities of one gamble, in order to represent more relia-
bility indexes, lower and upper probabilities are
generalized to upper and lower expectations
M Xð Þ,M Xð Þ� �

which represent an ‘average’ of some
gambles, that is, M Xð Þ=E g Xð Þð Þ. Actually, many relia-
bility indexes can be rewritten as an expectation of one
gamble such as

R tð Þ = Pr X − t ≥0f g=E I t, +∞½ Þ Xð Þ� �
=
ð
Ω
I t, +∞½ Þ Xð Þρ Xð ÞdX

(1)

F tð Þ =P X ≤ tð Þ=
ð
R+

I 0, t½ � Xð Þρ Xð ÞdX =E I 0, t½ � Xð Þ� �
(2)

MTTF =
ð
R +

Xρ Xð ÞdX =E Xð Þ (3)
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and structural reliability

R= E I t, +∞½ � g r, sð Þð Þ� �
(4)

Definition 2.1.2 Natural extension is one of the key
concepts of imprecise probability theory for constructing
models to draw inferences from the existing data. In
current papers, natural extension models are represented
by different forms of optimization models [16] and in
which reliability indexes of interest are expressed as
objective functions and the existing data make up the
feasible region. Assume the unknown reliability index M
of interest can be expressed as M = E g Xð Þð Þ where
X = X1, . . . ,Xnð Þ and the available reliability data can be
expressed in forms of E ’ij xið Þ� �

, then natural extension
model of its primal form can be written as

M M
� �

= min
P

max
P

� �ð
Rn

+

g Xð Þρ Xð ÞdX (5)

subject to

ρ Xð Þ ≥0,
ð
Rn

+

ρ Xð ÞdX = 1

aij ≤
ð
Rn

+

’ij xið Þρ Xð ÞdX ≤ aij, i ≤ n, j ≤mi

(6)

where the set P is all possible n-dimensional density
functions ρ Xð Þf g satisfying constraints which are made
up by the available reliability data. The essence of nat-
ural extension model is to find the supremum and infi-
mum of unknown indexes in the feasible region.
Obviously, the available reliability data can be thought
as the evidence to reduce the range of set P. If the para-
meters are independent, ρ Xð Þ can be written as

ρ Xð Þ= ρ x1ð Þ × ρ x2ð Þ × � � � × ρ xnð Þ (7)

Natural extension in its primal form is sometimes too
complex to solve, thus Kuznetsov [16] applied the
duality theorem of linear programming in eqs (5) and
(6) to obtain the new form called Kuznetsov’s form.
According to the duality theorem, eqs (6) and (7) can
be written as:

M gð Þ= sup
c, cij,dij

c+
Xn
i= 1

Xmi

j= 1

cijaij − dijaij
� 	( )

(8)

subject to

c+
Xn
i= 1

Xmi

j= 1

cij − dij
� �

’ij xið Þ ≤ g Xð Þ (9)

and

M gð Þ = inf
c, cij, dij

c+
Xn
i= 1

Xmi

j= 1

cijaij −dijaij
� 	( )

(10)

subject to

c+
Xn
i= 1

Xmi

j= 1

cij −dij
� �

’ij xið Þ > = g Xð Þ (11)

Here c, cij, dij are optimization variables, c corresponds to
the constraint condition

Ð
Rn

+
ρ Xð ÞdX = 1, cij corresponds to

the constraint condition
Ð
Rn

+
’ij xið Þρ Xð ÞdX ≤ aij, and dij

corresponds to the constraint condition
Ð
Rn

+
’ij xið Þ

ρ Xð ÞdX ≥ aij.

2.2 Imprecise structural reliability analysis

Imprecise structural reliability analysis is based on the
assumption that the available information can be
expressed in form of upper and lower expectations [2,
3]. The problem of structural reliability analysis based
on imprecise probability theory can be stated as fol-
lows. Let limit state function of a structural system be
denoted by g Xð Þ where X = X1,X2, . . . ,Xnð Þ and
X = X1,X2, . . . ,Xnð Þ is a vector of all physical variables
related to structural reliability, such as load, strength,
temperature, impact value, material characteristics and
others. Failure region of this structural system can be
expressed as Φ where Φ= X : g Xð Þ < 0f g. So, the relia-
bility of this structure can be computed as
R=Pr g Xð Þ ≥0f g and the failure probability can be com-
puted as F =Pr g Xð Þ < 0f g= 1−R.

Assume that there are m statistical data collected for
vector X and they can be expressed as upper and lower
expectations of gambles fi Xð Þ, that is ai, ai½ �, and fi Xð Þ are
known real-valued functions of variable X. Thus, the
statistical data can be written as

ai ≤
ð
Ω
fi Xð Þρ Xð ÞdX ≤ ai (12)

where ρ Xð Þ is the joint probability density function.
According to natural extension model, structural

reliability can be rewritten in form of R=E I 0, +∞½ Þ
�

g Xð Þð ÞÞ. Then, the lower and upper bound of structural
reliability can be computed by using the following
equations.

R= inf
P

ð
Ω
I 0, +∞½ Þ g Xð Þð Þρ Xð ÞdX

R= sup
P

ð
Ω
I 0, +∞½ Þ g Xð Þð Þρ Xð ÞdX

(13)

subject to
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ρ Xð Þ ≥0,
ð
Ω

ρ Xð ÞdX = 1,

ai ≤
ð
Ω

fi Xð Þρ Xð ÞdX ≤ ai, i= 1, . . . ,m

(14)

where P is the set of all possible probability density
functions ρ Xð Þ satisfying constraints (14).

3 Interval structural reliability
analysis

Interval analysis method is also an effective method to
deal with the situation in lack of data. Assume that every
xi in vector X = x1, x2, . . . , xnð Þ varies in an interval
xIi = xi, xi½ � and X = x1, x2, . . . , xnð Þ is the same physical
parameter vector in Section 2.2. According to interval
analysis, the midpoint and radius of the vector X can be
calculated by

Xc = xc1 , x
c
2, . . . , x

c
n

� �
, Xr = xr1, x

r
2, . . . , x

r
n

� �
(15)

Therefore, XI and xi can be expressed in the following
standard

XI =Xc +XrΔI , xi = xci + x
r
i δi (16)

where ΔI = − 1, 1½ � is called the standardized unit interval
and δi 2 ΔI is called the standardized unit interval
variable.

For interval variables X and Y, the four basic alge-
braic operations commonly used in literatures includes

X +Y,X +Y
� �

= x + y, x + y
h i

X −Y,X −Y
� �

= x − y, x − y
h i

X � Y,X � Y� �
= min x � y, x � y, x � y, x � y,
h
max x � y, x � y, x � y, x � y

i
X=Y,X=Y
h i

= X,X
� � � 1=Y, 1=Y

� �
, 0 ∉ Y,Y

� �� �

(17)

As mentioned above, the limit state function for a struc-
ture system can be written as

M = g Xð Þ,X = X1,X2, ...,Xnð Þ,Xi 2 XI
i (18)

If g Xð Þ > 0, the structure is safe, if g Xð Þ < 0, the structure
fails, and if g Xð Þ=0, the structure reaches its limit state.
Because X is an interval variable, then M is an interval
variable which has midpoint Mc and radius Mr. When
limit state function is a continuous function, the

non-probabilistic structural reliability index can be
expressed as [17]

η=
Mc

Mr (19)

Obviously, if η ≥ 1, this structure is reliable, if η ≤ − 1, this
structure is unreliable, and if − 1 ≤ η ≤ 1, both reliable and
failed are possible. While the value of η is bigger, the
reliability level is higher.

If limit state function g Xð Þ is a linear function, we can
easily get the range ofM by algebraic operations. However,
eq. (18) is usually a nonlinear function with uncertainty
parameters which have small deviations, so we have to
expand eq. (18) by first order Taylor expansion at Xc. The
expansion process can be expressed as [18]

M = g Xc +XrΔð Þ= g Xcð Þ+
Xn
i= 1

∂gðXÞ
∂Xi






Xc

Xrδi (20)

So, non-probabilistic structural reliability index can be
computed by

η � g Xcð ÞPn
i= 1

∂gðXÞ
∂Xi





Xc

Xr
(21)

However, when limit state function is a highly nonlinear
function, error owing to approximation in eq. (21) is very
large. So optimization method which is more robust and
efficient for structural reliability analysis is proposed by
Guo [18]. According to Guo, the upper and lower bound of
M can be computed by the following optimization model

MU = max g Xð Þ,ML = min g Xð Þ (22)

subject to

XL ≤X ≤XU (23)

So the non-probabilistic reliability index can be com-
puted by

η=
Mc

Mr =
MU +ML

MU −ML (24)

4 Comparisons of imprecise
structural reliability analysis
and interval structural reliability
analysis

In this section, firstly we will introduce how non-probabil-
istic structural reliability index η can be approximately
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calculated by imprecise structural reliability analysis
method. Then, we will make a comparison of the two
non-probabilistic structural reliability analysis methods
on aspects such as modeling ideas, model structures,
and precision.

4.1 Non-probabilistic structural reliability
index’ approximately computation

4.1.1 Independent variables

Assume that variables Xi are independent and they are
interval variables. Here, we adopt optimization model to
compute the non-probabilistic structural reliability index
η, so the limit state function as well as its non-probabil-
istic structural reliability index are

M = g Xð Þ,X = X1, . . . ,Xnð Þ

η=
Mc

Mr =
MU +ML

MU −ML

(25)

where MU ,ML are computed by eqs (22) and (23).
In order to make a comparison with imprecise struc-

tural reliability analysis method, we transfer eq. (16) in
the following form

X 2 XI = Xc −Xr,Xc +Xr½ � (26)

Now we have no information about the probabilities or
probability distributions of variables Xi and we only
know that variables Xi vary in intervals XI

i , that is to
say, variable Xi may take any value of intervals XI

i . As
mentioned above, natural extension models can just deal
with information which can be expressed as upper and
lower expectations. For a comparison, here, let M� and
M� represent average limit state function’s upper and
lower bound which can be expressed as upper and
lower expectations of g Xð Þ, that is M� = E g Xð Þð Þ and
M� =E g Xð Þð Þ. In the following sections, variables with
superscript “�” mean these variables are applied or com-
puted in imprecise structural reliability analysis.

Here, variables are considered to be independent.
According to natural extension model the upper and
lower bound of average structural limit state function
can be computed by

M� = inf
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn

M� = sup
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn

(27)

subject to

ρ Xið Þ ≥0,
ðxc1 + xr1
xc1 − x

r
1

ρ X1ð ÞdX1 = 1, . . . ,
ðxcn + xrn
xcn − x

r
n

ρ Xnð ÞdXn = 1

(28)

and the non-probabilistic structural reliability index under
the case of independent variables can be calculated by

η�Independent =
M�c

M�r =
M

�
+M�

M
�
−M� (29)

In this way interval structural reliability analysis models
with dependent variables are transformed to imprecise
structural reliability analysis models.

4.1.2 Dependent variables

For dependent variables, non-probabilistic structural
reliability index can also be approximately computed by
imprecise structural reliability model. Assume that
dependent variables Xi vary in intervals XI . In this case,
the bound of structural performance can be computed by

M� = inf
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þρ X1, . . . ,Xnð ÞdX1 � � �dXn

M� = sup
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þρ X1, . . . ,Xnð ÞdX1 � � �dXn

(30)

subject to

ρ Xið Þ ≥0,
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

ρ X1, . . . ,Xnð ÞdX1 � � �dXn = 1

(31)

and the non-probabilistic structural reliability index can
be calculated by

η� =
M�c

M�r =
M

�
+M�

M
�
−M� (32)

Here, the constraints (31) make up a very large feasible
region thus the result M�,M

�� �
is also very large and

imprecise.
As we know, non-probabilistic structural reliability

index is sensitive to its midpoint and radius of interval
variables, more or less [19]. In this model, η� is more sensi-
tive toM�r,M�r =M� −M�, becauseM�r under partial infor-
mation is usually very large especially in the case of
dependent variables. In this case, approaches to decrease
the imprecision of non-probabilistic structural reliability
index should be introduced. Actually, the dependence rela-
tionship of dependent variables can be quantified by
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Copula function. According to [20], joint probability density
function can be transformed into a product of Copula func-
tion and its marginal probability density functions. And if
marginal probability density functions are continuous,
Copula function can be only determined. So the introduc-
tion of Copula function can be as an additional constraint to
eq. (31) so that the feasible region will be reduced. Here, we
introduce n-dimensional Copula function to represent the
relationship of variables in eqs (30) and (31), so the average
structural performance can be rewritten as

M� = E g Xð Þð Þ=
ð
Ω
g Xð Þ∂

nCθ u1, � � � , unð Þ
∂u1 � � � ∂un






u1 = ρ1 xð Þ, ���, un = ρn xð Þ

ρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn

(33)

where ρi �ð Þ are marginal probability density functions of
variables X1, . . . ,Xn and Cθ u1, . . . , unð Þ characterizes the
relationship of ρi �ð Þ, and θ is relevant parameter.

So the upper and lower bound of average structural
performance can be rewritten as

M� = inf
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þ∂
nCθ u1, . . . , unð Þ
∂u1 . . . ∂un






u1 = ρ1 xð Þ, ..., un = ρn xð Þ

ρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn

M� = sup
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

g Xð Þ∂
nCθ u1, . . . , unð Þ
∂u1 . . . ∂un






u1 = ρ1 xð Þ, ..., un = ρn xð Þ

ρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn

(34)

subject to

ρ Xið Þ ≥0,
ðxc1 + xr1
xc1 − x

r
1

� � �
ðxcn + xrn
xcn − x

r
n

∂nCθ u1, . . . , unð Þ
∂u1 . . . ∂un






u1 = ρ1 xð Þ, ..., un = ρn xð Þ

ρ X1ð Þ � � � ρ Xnð ÞdX1 � � �dXn = 1

(35)

4.2 Comparison on the two non-probabilistic
structural reliability models

As analyzed above, non-probabilistic reliability index can
be approximately calculated by imprecise probabilistic
model. So it is necessary to make a comparison of these
two models on aspects such as assumptions, modeling
ideas, model structures, and applicable condition. So that
we can easily determine which method is more suitable

in a certain situation and predict the prospects or the
works should to be done for the widely application of
interval structural reliability analysis.
(1) Not all interval structural reliability analysis models

can be transferred to interval structural reliability
analysis model.

In interval structural reliability analysis, variables are con-
sidered varying in intervals, that is, Yi 2 YI

i and it does not
consider the variables’ probability densities in their subject
intervals. While in imprecise structural reliability analysis,
unknown probability density distribution is assumed for
every variable and the upper and lower bound of struc-
tural performance is computed by optimization models.
However, when objective function of interest cannot be
expressed as the expectation of known functions, non-
probabilistic structural reliability indexes can’t be calcu-
lated by imprecise structural reliability analysis.
(2) Imprecise structural reliability analysis can comple-

ment interval structural reliability analysis sometimes.

Interval structural reliability analysis adopts non-prob-
abilistic reliability index η to characterize the degree of
a structure’s reliability, when η ≥ 1 this structure is reli-
able, when η ≤ − 1 this structure is unreliable, and when
− 1 ≤ η ≤ 1 this structure is in an uncertain domain, that is,
when − 1 ≤ η ≤ 1, we cannot make sure the reliability level
of this structure. In this case, the following imprecise
structural reliability analysis model can be used to quan-
tify the structural reliability. This model is constructed on
the same assumption as in interval structural reliability
analysis, so the results are equivalent.

R�= inf
ðyc1 + yr1
yc1 − y

r
1

� � �
ðycn + yrn
ycn − y

r
n

I 0, +∞½ Þ g Yð Þð Þρ Y1, . . . ,Ynð ÞdY1 � � � dYn

R
�
= sup

ðyc1 + yr1
yc1 − y

r
1

� � �
ðycn + yrn
ycn − y

r
n

I 0, +∞½ Þ g Yð Þð Þρ Y1, . . . ,Ynð ÞdY1 � � �dYn

(36)

subject to

ρ Yið Þ ≥0,
ðyc1 + yr1
yc1 − y

r
1

� � �
ðycn + yrn
ycn − y

r
n

ρ Y1, � � � ,Ynð ÞdY1 � � �dYn = 1

(37)

4.3 Comparison on imprecision

In this section, we will make an imprecision comparison of
the two non-probabilistic structural reliability analysis
methods.
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In imprecise structural reliability analysis, non-prob-
abilistic structural reliability index is calculated by

η� =
M�c

M�r =
M

�
+M�

M
�
−M�

and M�,M� are computed by eqs (27) and (28).
Denote η�

Dependent
and η�Independent are the non-probabilistic

structural reliability indexes under the cases of dependent
variables and independent variables respectively,
Obviously, η�

Dependent
< η�Independent. When comparing with inter-

val structural reliability analysis, we can get
η�

Dependent
< η�Independent < η. Specific explanation is as follows.

In interval structural reliability analysis, unknown para-
meters are considered as independent and all possible
values of X in XI have been taken participate in the algebraic
operations with the same possibilities. While in imprecise
structural reliability analysis, its essence is to find the upper
and lower bound of unknown variable in a feasible region
made up by all possible probability density functions, that is
to say, it consider the possibilities of every value may be
taken from its obeyed interval, thus we will get a muchmore

imprecise interval and M� −M� ≥M −M.
According to probability theory, the expectation of

samples is approximately equal to expectation of the
whole, so

M�c � Mc (38)

Because M,M
� �

is belong to M�,M�� �
, so

M�r ≥Mr (39)

Take eqs (38) and (39) to eq. (16), we can getM�c � Mc that

η�
Dependent

< η�Independent < η (40)

5 Structural reliability analysis
for aero-engine turbine disk

Turbine disk is a key component of aero-engine whose
working environment is very hash. The turbine disk

usually works under high rotation speed, high tempera-
ture, high speed gas flow, high pressure and it also bears
cyclic loadings of centrifugal force, thermal stress, aero-
dynamic force, external excitation and impact as well as
dynamic forces, thus structural reliability analysis for the
turbine disk is very essential. Here we consider a certain
type of turbine disk shown as Figure 1.

For this turbine disk its limit state function can be written
as [18]

M = σsS−
Cω2

2π
− 2ρω2J (41)

where σs is the limit strength, S is cross-sectional area, C
is a constant, ω is the rotation rate, ρ is the mass density,
and J is cross sectional moment of inertia.

Assume that parameters σs, S,C,ω, ρ, J can be
expressed as interval form, just as shown in Table 1 [21].

According to interval analysis, the non-probabilistic
structural reliability index can be computed by

η=
Mc

Mr = 1.0951 > 1 (42)

Assume we don’t know the dependence of parameters
then the natural extension model in primal form for
computing the upper and lower bound of average struc-
tural performance can be written as

Figure 1: A certain of type turbine disk.

Table 1: Data for the parameters σs,S, C,n,ρ, J.

Parameters XU XL Xc Xr

σs 1, 285.036MPa 974.764MPa 1, 130MPa 155.036MPa
S 6.3264× 10− 3m2 6.0832× 10− 3m2 6.2048× 10−3m2 0.1216× 10− 3m2

C 5.8904 5.446 5.6682 0.2222
n 12, 834.12 rpm 11, 865.88 rpm 12, 350 rpm 484.12 rpm
ρ 8, 724.512 kg=m3 7, 755.488 kg=m3 8, 240 kg=m3 484.512 kg=m3

J 1.286079× 10−4m4 1.143235× 10− 4m4 1.214657× 10− 4m4 0.071422 × 10− 4m4
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M�= inf
ð1285.036
974.764

ð6..3264 × 10− 3

6.0832 × 10 − 3

ð5.8904
5.466

ð8724.512
7755.488

ð1343.9859
1242.592

ð1.286079 × 10− 4

1.143235 × 10 − 4

σsS−
Cω2

2π
− 2ρ0ω

2J
� �

ρ σs, S,C,ω, ρ, Jð Þd σs, S,C,ω, ρ, Jð Þ

M� = sup
ð1285.036
974.764

ð6..3264 × 10− 3

6.0832 × 10− 3

ð5.8904
5.466

ð8724.512
7755.488

ð1343.9859
1242.592

ð1.286079 × 10− 4

1.143235 × 10− 4

σsS−
Cω2

2π
− 2ρ0ω

2J
� �

ρ σs, S,C,ω, ρ, Jð Þd σs, S,C,ω, ρ, Jð Þ

(43)

subject to

ð1285.036
974.764

ð6..3264 × 10− 3

6.0832 × 10− 3

ð5.8904
5.466

ð8724.512
7755.488

ð1343.9859
1242.592

ð1.286079 × 10− 4

1.143235 × 10− 4

ρ σs, S,C,ω, ρ, Jð Þd σs, S,C,ω, ρ, Jð Þ= 1
(44)

Also, natural extension model for computing the upper
and lower bound of average structural performance can
be rewritten Kuznetsov’s form:

M� = sup
c, cij, dij

c+
X6
i= 1

ci1ai1 − di1ai1ð Þ
 !

(45)

subject to

c+
X6
i= 1

ci1 − di1ð Þ ≤ σsS−
Cω2

2π
− 2ρ0ω

2J (46)

and

M� = inf
c, cij, dij

c+
X6
i= 1

ci1ai1 − di1ai1ð Þ
 !

(47)

subject to

c+
X6
i= 1

ci1 − di1ð Þ ≥ σsS−
Cω2

2π
− 2ρ0ω

2J (48)

Thus, non-probabilistic reliability index is calculated by

η
�
Dependent

=
M�c

M�r =
28367.21 + 1037.27
28367.21 − 1037.27

= 1.0759 (49)

When all parameters are independent then natural exten-
sion model for computing the upper and lower bound of
average structural performance can be written as:

M� = inf
P

ð
σsS−

Cω2

2π
− 2ρ0ω

2J
� �

ρ σsð Þρ Sð Þρ Cð Þρ ωð Þρ ρð Þ

ρ Jð ÞdσsdSdCdωdρdJ

M� = sup
P

ð
σsS−

Cω2

2π
− 2ρ0ω

2J
� �

ρ σsð Þρ Sð Þρ Cð Þρ ωð Þρ ρð Þ

ρ Jð ÞdσsdSdCdωdρdJ

(50)

subject to

ð1285.036
974.764

ð6..3264 × 10− 3

6.0832 × 10− 3

ð5.8904
5.466

ð8724.512
7755.488

ð1343.9859
1242.592

ð1.286079 × 10− 4

1.143235 × 10− 4

ρ σsð Þρ Sð Þρ Cð Þρ ωð Þρ ρð Þρ Jð ÞdσsdSdCdωdρdJ = 1

(51)

For independent parameters, non-probabilistic reliability
index is calculated by

η
�
Independent =

M�c

M�r =
24761.13 + 1112.97
24761.13− 1112.97

= 1.0941 (52)

Thus, we can see that η�
Dependent

< η�
Independent < η and the cal-

culations are in keeping with our comparisons.

6 Conclusion

This paper provides a detailed introduction of imprecise
structural reliability analysis method and interval struc-
tural reliability analysis method. Comparisons of these
two methods in terms of modeling ideas, model structure,
imprecision are also made. It is proved that sometimes
interval structural reliability analysis model can be trans-
ferred to imprecise structural reliability analysis model
when the available reliability data can be expressed in
the form of upper and lower expectations of known func-
tions. Besides, the results from imprecise structural relia-
bility analysis methods are much more conservative than
those from interval structural reliability analysis. The
example of turbine disk illustrated the computational pro-
cess of these two methods and the calculated results are
consistent with the comparisons discussed in the paper.
Note that this paper just discussed the similarities and
differences of the two non-probabilistic structural reliabil-
ity analysis method and didn’t discuss the fusion of the
two methods, so future research will focus on how to fuse
interval analysis and imprecise probability theory into one
model to deal with the problem of hybrid uncertainties.

Funding: This research was supported by the National
Natural Science Foundation of China under contract
number 11272082.

References

1. Li YF, Huang HZ, Zhu SP, Liu Y, Xiao NC. An application of fuzzy
fault tree analysis to uncontained events of an areo-engine
rotor. Int J Turbo Jet Engines 2012;29:309–15.

2. Utkin LV, Kozine IO. Stress-strength reliability models under
incomplete information. Int J Gen Syst 2002;31:549–68.

302 Z. Liu et al.: Comparisons of Two Non-probabilistic Structural

Brought to you by | University of Electronic Science and Technology of China
Authenticated | hzhuang@uestc.edu.cn author's copy

Download Date | 9/1/17 6:42 AM



3. Utkin LV, Kozine IO. Structural reliability modelling under
partial source information. In: Langseth H, Lindqvist B (eds.):
Proc. of the Third International Conference on Mathematical
Methods in Reliability (Methodology and Practice). Trondheim,
Norway, 2002:647–50.

4. Li YF, Huang HZ, Liu Y, Xiao N, Li H. A new fault tree analysis
method: fuzzy dynamic fault tree analysis. Eksploatacja i
Niezawodnosc Maintenance Reliab 2012;14:208–14.

5. Li YF, Mi J, Liu Y, Yang YJ, Huang HZ. Dynamic fault tree
analysis based on continuous-time Bayesian networks under
fuzzy numbers. Proc Inst Mech Eng Part O, J Risk Reliab
2015;229:530–41.

6. Li YF, Huang HZ, Zhang H, Xiao NC, Liu Y. Fuzzy sets method of
reliability prediction and its application to a turbocharger of
diesel engines. Adv Mech Eng 2013;2013:7, Article ID 216192.

7. Utkin LV, Coolen FP. Imprecise reliability: an introductory
overview. Comput Intell Reliab Eng 2007;40:261–306.

8. Coolen FP. On the use of imprecise probabilities in reliability.
Qual Reliab Eng Int 2004;20:193–202.

9. Ben-Haim Y. Robust reliability in the mechanical sciences.
Berlin: Springer-Verlag, 1996.

10. Elishakoff I. Discussion on a non-probabilistic concept of
reliability. Struct Saf 1995;17:195–99.

11. Zadeh LA. A simple view of the dempster-shafer theory of
evidence and its implication for the rule of combination. AI
Mag 1986;7:85–90.

12. Cai KY. Parameter estimations of normal fuzzy variables. Fuzzy
Sets Syst 1993;55:179–85.

13. Huang HZ, Tong X, Zuo MJ. Posbist fault tree analysis of
coherent systems. Reliab Eng Syst Saf 2004;84:141–48.

14. Walley P. Statistical reasoning with imprecise probabilities.
London: Chapman and Hall, 1991.

15. Kozine IO, Filimonov YV. Imprecise reliabilities: experiences
and advances. Reliab Eng Syst Saf 2000;67:75–83.

16. Utkin LV, Kozine IO. Different faces of the natural extension.
2nd International Symposium on Imprecise Probabilities and
Their Applications, Ithaca, New York, 2001.

17. Guo SX, Lu ZZ, Feng YS. A non-probabilistic model of structural
reliability based on interval analysis. Chinese J Comput Mech
2001;18:56–60.

18. Guo SX, Zhang L, Li Y. Procedures for computing the non-
probabilistic reliability index of uncertain structures. Chinese J
Comput Mech 2005;22:227–32.

19. Li GJ, Lu ZZ, Wang P. Sensitivity analysis of nonprobabilistic
reliability of uncertain structure. Acta Aeronautet Astronautica
Sinica 2011;32:1–7.

20. Tang JY, Zhao YX, Song DL. Static and dynamic models for
reliability calculation of stress-strength interference. J
Southwest Jiaotong Univ 2010;45:384–88.

21. Xiao NC. Structural reliability methods under stochastic and
epistemic uncertainties, PhD D. Chengdu: University of
Electronic Science and Technology of China, 2012.

Z. Liu et al.: Comparisons of Two Non-probabilistic Structural 303

Brought to you by | University of Electronic Science and Technology of China
Authenticated | hzhuang@uestc.edu.cn author's copy

Download Date | 9/1/17 6:42 AM


