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Abstract

This paper presents a modified nonlinear fatigue damage accumulation model accounting for load inter-

action effects. The original model is based on physical property degradation of materials, from which the

load interaction effects are ignored. However, the load interaction effects have a significant influence on

the fatigue life. In the study, by analyzing five damage models, a load interaction parameter is obtained and

added to the original model. Experimental work is then carried out to verify the modified model of four

categories of experimental data from smooth and notch specimens under two-level stress loading.

Moreover, comparison is made among the results calculated by the test data, the Miner’s rule, the original

model, and the modified model.
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Introduction

Fatigue is a failure mode where the materials’ damage accumulation and property degraded under
cyclic loading, and finally lead to fracture. Damage is an important parameter to describe the
change of material state in the process of fatigue failure, and it plays a key role in life prediction
of mechanical components and structures.

Until now, lots of deterministic damage accumulation models have been developed, which can be
mainly classified into two categories (Yang et al., 2003): linear damage cumulative theories and
nonlinear damage cumulative theories. Among these fatigue damage accumulation models, the linear
damage accumulation theory, also known as Palmgren–Miner’s rule (Miner, 1945), is commonly
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used in analyzing cumulative fatigue damage due to its relative simplicity, close approximation to
reality, and widespread knowledge and utilization. The Miner’s rule can be expressed as

D ¼
Xn
i¼1

ni
Ni

ð1Þ

But there are some shortcomings for the Miner’s rule.

(1) It fails to consider load history.
(2) Cumulative damage has no relationship with load sequence effects.
(3) Effects of load interaction are not taken into account.

Generally, the result of life prediction by Miner’s rule is nonconservative. Therefore, to address
the above-mentioned disadvantages of Miner’s rule, the nonlinear cumulative damage theories were
suggested. However, until now, there is not a comprehensive model that can take all these factors
into consideration (Fatemi and Yang, 1998).

Under complex loading, either small cycles or large cycles are dependent on loading interaction,
sequence, or memory effects. Although a lot of work has been done in this area (Bui-Quoc et al.,
1976; Corten and Dolan, 1956; Freudenthal and Heller, 1959; Morrow, 1986; Zhang et al., 1991),
there is still no clear explanation to explain the reduced fatigue lives due to these interactions.
In some fatigue damage accumulation models, loading interaction effects are assumed to be insig-
nificant, although experimental data show that the fatigue life will be significantly shorter
than predicted one (Teledyne CAE, 1979). There are explanations that can be used to explain this
phenomenon (Morrow, 1986).

(1) Large strain usually results in the initial microcracks earlier in life, and then these microcracks
propagate under the small cycles, which will cause more damage sooner than that under constant
amplitude loading conditions.

(2) For the specimen, the major cycles will cause a roughening of the surface in the procedure of
cyclic plastic deformation (Watson et al., 1973), providing more crack initiation sites under the
smaller cycles.

(3) Damage cannot be accumulated linearly (Manson and Halford, 1980).

In order to improve the fatigue life prediction, Corten and Dolan (1956) proposed a model called
the Corten–Dolan model. In this model, load interaction effects are introduced, and this theory is
based on the modification of the S–N curve. In addition, there is a reference point, which is cor-
responding to the highest level in the load history. Then, Freudenthal and Heller (1959) present
another interaction type of cumulative damage theory, which is also based on the modification of the
S–N curve. The difference between the Corten–Dolan model and Freudenthal–Heller model is the
reference point. For the Freudenthal–Heller model, the reference point is chosen at the stress level
accordant with a fatigue life of 103–104 cycles. Bui-Quoc et al. (1976) proposed a series of hybrid
models; in these models, both the effects of mean stress/strain and the effects of temperature and
strain rates (Zhang et al., 1991) are taken into account. Recently, Morrow (1986) proposed a non-
linear plastic work interaction damage model by introducing an interactive factor into Miner’s rule,
which gives a more accurate fatigue life prediction.

The aim of this paper is to represent the load interaction effects using a parameter and consider-
ing that in what form the load interaction parameter can be introduced into an original model, so it
can get a better result of the life prediction.
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Theories accounting for load interaction effects

In general, the nonlinear cumulative damage theories can be divided into six categories (Zhu et al.,
2012).

(1) Damage theories based on the physical property degradation of materials (Zhu et al., 2013).
(2) Damage curve approaches.
(3) Continuum damage mechanics approaches.
(4) Damage theories based on energy (Zhu and Huang, 2010; Zhu et al., 2012).
(5) Damage theories accounting for load interaction effects.
(6) Damage theories based on thermodynamic entropy.

There is no clear boundary that exists among these models.
The crack formation life should be related to the applied maximum stress in the loading spectrum

(Hua and Fernando, 1996). The load interaction effects can be used to explain the phenomenon that
the crack growth increment in a given cycle under variable amplitude loading will be different from
the increment under constant amplitude loading (Skorupa, 1998). Usually, if a specimen is loaded
under a multilevel loading condition, the crack length at the end of the first stress level depends on
both the first loading condition and the subsequent stress level (Bui-Quoc, 1982). For instance, the
high–low loading sequence often leads to a shorter lifetime than the low–high loading sequence
(Adam et al., 1994), whereas the opposite result is obtained for some composite materials (Schaff
and Davidson, 1997). In Van Paepegem and Degrieck (2002), the authors concluded that there is no
universal statement that the specimen under high–low loading sequence is more or less damaged
than low–high loading sequence. But, in actuality, the load interaction effects lead to the change of
the damage accumulation during the remaining life. The load interaction effects depend on the
transitions of stress levels and their number of appearance. The larger the difference between the
stress amplitudes, the stronger damaging effects it results (Freudenthal and Heller, 1959). Therefore,
the load interaction effects must be considered under variable amplitude loading.

In this section, this paper will obtain a load interaction parameter by studying and analyzing five
damage models accounting for load interaction effects. They are the Corten–Dolan model, the
Freudenthal–Heller approach, the Morrow’s plastic work interaction rule, the Carpinteri’s model,
and the V. Dattoma’s model.

Corten–Dolan model

For the Corten–Dolan model (Corten and Dolan, 1956), the definition of fatigue damage is

Di ¼ mirin
ai
i ð2Þ

where mi is the number of damage nuclei, ri is the damage evolution rate, and ai is the constant.
The failure criterion is given as

1 ¼
Xp
i¼1

ni

N1
�max

�i

� �d ð3Þ

Here, the exponent d can be considered as the material’s sensitivity to stress load history.
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For constant amplitude stresses �1 and �2, the damage is a constant when the material or struc-
ture gets failure as

Df ¼ m1r1n
a1
1 ¼ m2r2n

a2
2 ð4Þ

For two different alternative stress amplitudes, and assuming that total load cycles are n, the
specimen load cycles are an (a< 1) under amplitude stresses �1 and load cycles are (1–a)n under
amplitude stresses �2. Due to the interaction effects of these two stress amplitudes, the crack nuclear
will continue to expand under low amplitude stress which produced the high stress amplitude.
Assuming that �1 4 �2, in this case m2 ¼ m1 then according to equation (4), we can get

Df ¼ m1r1n
a1
1 ¼ m2r2n

a2
2 ð5Þ

Equation (5) can be simplified as

nA2R
1=a1 ¼ n1 ð6Þ

In equation (6), R ¼ r2=r1, A ¼ a2=a1.
Experimental work had been done by Corten and Dolan to investigate the relationship between

the parameter R1=a1 and magnitude of two stress levels in a spectrum. Also, when a1 ¼ a2, according
to the experimental work, Corten and Dolan concluded that

R1=a ¼
�2
�1

� �d

ð7Þ

For multiple-level stress loading, we have

R1=a ¼
�i
�max

� �d

ð8Þ

According to the relationship between the stress amplitudes and the parameter R1=a, as in equa-
tion (6), the interactions between the two stresses �1 and �2 play an important role to determine the
value of n2.

Freudenthal–Heller model

For the Freudenthal–Heller model (Freudenthal and Heller, 1959), the definition of fatigue
damage is

D ¼
Xp
i¼1

ni!i

Ni
ð9Þ

The failure criterion is

1 ¼
NPp

i nið�i=�mÞ
d

ð10Þ

Lv et al. 171

 at Shanghai Jiaotong University on March 14, 2015ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


Although this theory is another interaction type of cumulative damage theory, it is interesting
to note that the expression of Freudenthal–Heller model has a similar form as the Corten–Dolan
model. The difference between them is the selection of the reference point. In Freudenthal–Heller
approach, the parameter ð�i=�mÞ

d is used to describe the effects of load interaction, usually it
is called the interaction factor. For this model, it connected the fatigue damage with the slip
striations. The stress amplitudes will determine the distance between the striations, and the inter-
action effects between different stress amplitudes will produce an acceleration of the damage
accumulation. More detailed information about this approach can be found in Teledyne
CAE (1979).

Morrow’s plastic work interaction rule

Morrow’s (1986) rule is a nonlinear accumulative damage model which accounts for load inter-
action effects. According to the plastic work interaction of Morrow’s rule, if the specimen is
under a variable amplitude stress condition, the fatigue damage caused by the stress of amplitude
�i is

Di ¼
ni
Ni

�i
�max

� �f

ð11Þ

The total damage under variable amplitude loading spectrum can be calculated as

D ¼
X ni

Ni

�i
�max

� �f

ð12Þ

The exponent f is considered as material’s sensitivity to variable amplitude stress history, and it
can be expressed as f ¼ cþ eþ 1ð Þ=c in which c and e are fatigue strength and ductility exponents.
The parameter �i=�maxð Þ

f indicates that the maximum loading in the loading spectrum has an influ-
ence on the damage which is caused by other loadings. This model suggests that the parameter
�i=�maxð Þ

f modifies the slope of the S–N curve in a way similar to the Corten–Dolan approach.

Carpinteri’s model

Carpinteri et al. (2003) proposed an accumulative damage model by combining with the rainflow
counting method. In this model, the fatigue damage caused by one reversal is given as

Di ¼

1

2Nl

�i
�l

� �b

�i � c�l

0 �i 5 c�l

8><
>: ð13Þ

In this model, there is also a parameter which has a form as the ratio of different series of stress
with exponent.
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V. Dattoma’s model

Dattoma et al. (2006) proposed an accumulative damage model by considering the effects due to
load interactions and to different sequences of load application. In this model, the fatigue damage
function is given as

D ¼ 1� 1�
n

Nf

� �1= 1��ð Þ
" #1= 1þ�ð Þ

ð14Þ

In this damage evolution model, D is chosen to be equal to 1 if the applied stress is less than the
fatigue limit, and it is a monotonically decreasing function of stress which can take the effects of load
interaction into account for multilevel loading.

Generally, under complex loading, the larger cycles and smaller cycles have a relationship with
loading interaction, sequence, or memory effects. Although a lot of work has been done in this area,
there is still no clear explanation that can be used to explain reduced fatigue lives due to these
factors. In this section, by studying and analyzing five damage models accounting for load inter-
action effects, it is concluded that under complex loading, the ratio of different series of stress level
can be used to consider the load interaction effects. Based on this idea, a load interaction parameter
is added to an original model in the following section.

The modified model

The original model

The original model is based on the physical property degradation of the materials. The decline of the
elastic modulus and yield strength during the fatigue failure process is mainly related to the crack
initiation and bearing area loss of specimens caused by crack growth under cyclic loading. The
plastic degradation process of materials can be attributed to the reduction of the amount of movable
dislocations and the formation process of dislocation movement barriers. The decline of material
toughness is the performance of the deterioration of strength and plasticity during the process of
fatigue failure.

In the original model (Ye and Wang, 2001), the fatigue damage is defined as

Dn ¼ �
DðNf�1Þ

lnNf
ln 1�

n

Nf

� �
ð15Þ

Or

Dn ¼ �
DðNf�1Þ

ln 1
2 �a=�f
� �1=h ln 1� 2 �a=�f

� ��1=h
n

h i
ð16Þ

For the original model, it has a good physical basis, and the final damage expression contains
only one parameter without any other parameters, so it has the advantages of simple form, but it
does not take the interaction effects between the loading stresses into consideration. As aforemen-
tioned, the load interaction effects will produce stronger damaging effects to the life predictions, and
in most cases, the predicted life by this model is nonconservative.
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Next, we introduce the interaction factor �i=�maxð Þ into equation (15), and the modified model is
shown as

Dn ¼ �
DðNf�1Þ

lnNf
ln 1�

n

Nf

� �
�
�i
�max

ð17Þ

In the previous section, for Corten–Dolan model and Morrow’s plastic work interaction rule,
from the micro perspective, it is concluded that the load interaction effects under cyclic loading
including several stresses are caused by the number of damage nuclei. The number of damage nuclei
for the higher stress is larger than it for the lower stress (Schijve, 2001). Meanwhile, the number of
damage nuclei produced by the highest stress amplitude under complex loading will lead to a change
of the damage accumulation at the lower stress amplitude. Moreover, the greater the difference
between the loading amplitudes is, the more obvious the load interaction effects are (Kaechele,
1963). From the macro perspective, a relationship between the load amplitudes can be used to
represent the load interaction effects which are caused by the number of damage nuclei.
Therefore, if the specimen is loaded under multilevel cyclic loading, through introducing an inter-
action factor into the fatigue damage model, we chose the maximum loading stress as a reference
point. Similar with the Corten–Dolan model and Morrow’s plastic work interaction rule, we intro-
duced an interaction factor in a form as �i=�max into a fatigue damage model.

For a fatigue cumulative damage model, it must answer three questions quantitatively: (a) For the
material or structure, how much fatigue damage is caused by one stress level; (b) how to cumulate
fatigue damage properly under multiple stress levels; and (c) when the material or structure gets
failure, how much the critical damage is (Xia and Yao, 2013). In order to verify its application, the
predictions made by the modified model should be compared with the test results under variable
amplitude. For the modified model, the damage caused by the first loading stress is

D1 ¼ �
DðNf1�1Þ

lnNf1
ln 1�

n

Nf1

� �
�
�1
�1
¼ �

DðNf1�1Þ

lnNf1
ln 1�

n

Nf1

� �
ð18Þ

In this case, there is only one-stage cyclic loading, which means that the interaction between the
different load amplitude does not exist, so the modified model can be simplified as the original
model.

For two levels loading, supposing that the specimen is first loaded at a stress �1 for n1 cycles, then
at a stress �2 for n02 cycles until it fails. By using the equivalence of fatigue damage, the residual
circulation ratio under the second level stress �2 is

n02
Nf2
¼ 1�

n1
Nf1

� �DðNf2�1Þ

DðNf1�1Þ
�
lnNf2
lnNf1
�
�1
�2

ð19Þ

More detailed information about the equivalence of fatigue damage method can be found in
Chen et al. (2006).

In equation (19), DðNf2�1Þ=DðNf1�1Þ can be expressed in a approximated form as

DðNf2�1Þ

DðNf1�1Þ
� 1
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So equation (19) can be simplified as

n02
Nf2
¼ 1�

n1
Nf1

� �lnNf2
lnNf1
�
�1
�2

ð20Þ

By using the equivalence of fatigue damage, we can convert the multilevel load to two-level load
to obtain fatigue damage accumulation formula under multilevel stress loading. According to equa-
tion (17), the damage caused by the first loading stress is

D1 ¼ �
DðNf1�1Þ

lnNf1
ln 1�

n

Nf1

� �
ð21Þ

According to equations (18) and (20), the cumulative cycle ratio under two-level stress loading is

n02
Nf2
þ

n2
Nf2
¼ 1�

n1
Nf1

� �lnNf2
lnNf1
�
�1
�2

þ
n2
Nf2

ð22Þ

If there is a three-level stress loading, similarly, by using the equivalence of fatigue damage and
according to equations (17) and (22), we can get the residual circulation ratio under �3 as

n03
Nf3
¼ 1� 1�

n1
Nf1

� �lnNf2
lnNf1
�
�1
�2

þ
n2
Nf2

2
4

3
5

8<
:

9=
;

lnNf3
lnNf2
�
�2
�3

ð23Þ

Therefore, the cumulative cycle ratio under three-level stress loading is

n03
Nf3
þ

n3
Nf3
¼ 1� 1�

n1
Nf1

� �lnNf2
lnNf1
�
�1
�2

þ
n2
Nf2

2
4

3
5

8<
:

9=
;

lnNf3
lnNf2
�
�2
�3

þ
n3
Nf3

ð24Þ

Similarly, we can get the formula for damage accumulation under variable loading conditions,
suppose that

Yi�1 ¼
n0i�1

Nf ði�1Þ
þ

ni�1
Nf ði�1Þ

ð25Þ

where Yi�1 represents the cumulative cycle ratio under (i� 1)-level stress loading and
n0
i�1

Nf ði�1Þ
represents

the residual circulation ratio under �i�1.
By repeating the above steps, we have

n0i
Nfi
¼ f1� Yi�1�g

lnNfi
lnNf ði�1Þ

�
�i�1
�i ð26Þ
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Then the cumulative cycle ratio under i-level stress loading is

ni
Nfi
þ

n0i
Nfi
¼ f1� Yi�1�g

lnNfi
lnNf ði�1Þ

�
�i�1
�i þ

ni
Nfi

ð27Þ

Therefore, when sequence of multilevel stress loading is known, the remaining life of the com-
ponent or structure can be predicted by equation (27).

For metallic materials, according to the physical meaning of the continuum fatigue damage, it
should meet the following conditions for a reasonable fatigue damage model (Chaboche and Lesne,
1988).

(1) Fatigue damage is irreversibly processed of energy consumption, along with the cyclic loading,
the damage is monotone increased as

@Dn

@n
4 0 ð28Þ

For the modified model, we have

@Dn

@n
¼

D Nf�1ð Þ

Nf � n
� �

lnNf

� 	 � �i
�max

4 0 ð29Þ

(2) The damage value produced by a small load should be less than that by a large load for in same
number of cycles

@2Dn

@n@�
4 0 ð30Þ

According to equations (16) and (30), we have

@2Dn

@n@�
¼

1�D Nf�1ð Þ

� �
�a Nf � n
� �

lnNf

� 	� 1

b
�
D Nf�1ð Þ Nf lnNf þ Nf � n

� �� 	
�a Nf � n
� �

lnNf

� 	2
8<
:

9=
; � �i�max

þ
D Nf�1ð Þ

Nf � n
� �

lnNf

� 	 � 1

�max
4 0

ð31Þ

The result of equations (29) and (31) indicates that the modified model is reasonable in theory.

Verification of the modified model and discussion

In this section, predicted results by the modified model are compared with the test data, Miner’s rule,
and the original model. Five categories of experimental data from smooth and notch specimens of
normalized 45 steel and 16Mn steel (Shang and Yao, 1998; Yao, 2003) are used to verify the
modified model under two-level stress loading. The notch specimens have a shape of ring groove
with the root radius being 0.25mm and the notch depth being 0.25mm. The specimens were under a
given number of cycles loading for a defined stress level. In order to compare the efficiency of the

176 International Journal of Damage Mechanics 24(2)

 at Shanghai Jiaotong University on March 14, 2015ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


modified model, test data are also assessed by the Miner’s rule and the original model. For normal-
ized 45 steel under tensile test, the high–low loading spectrum is 331.463–284.4MPa and low–high
loading spectrum is 284.4–331.463MPa, and when � ¼ 331:463MPa, the fatigue life of normalized
45 steel is N ¼ 5� 104, when � ¼ 284:4MPa, fatigue life of normalized 45 steel is N ¼ 5� 105. For
smooth normalized 16Mn steel under tensile test, the high–low loading spectrum is 562.9–
372.65MPa and low–high loading spectrum is 372.65–392.3MPa, and when � ¼ 562:9MPa, the
fatigue life of the 16Mn steel is N ¼ 3968; when � ¼ 372:65MPa, the fatigue life of 16Mn steel is
N ¼ 78730; and when � ¼ 392:3MPa, the fatigue life of 16Mn steel is N ¼ 78723. For notch normal-
ized 16Mn steel under tensile test, the high–low loading spectrum is 294.2–166.71MPa and low–high
loading spectrum is 166.71–294.2MPa, when � ¼ 294:2MPa, the fatigue life of 16Mn steel is
N ¼ 55400, and when � ¼ 166:71MPa, the fatigue life of 16Mn steel is N ¼ 1, 040, 000. For
smooth normalized 16Mn steel under rotating bending stress, the high–low loading spectrum is
394–345MPa and 366–324MPa, the low–high loading spectrum is 345–394MPa. When
� ¼ 324MPa, the fatigue life of 16Mn steel is N ¼ 1, 370, 200; when � ¼ 345MPa, the fatigue life
of 16Mn steel is N ¼ 402, 200; when � ¼ 366MPa, the fatigue life of 16Mn steel is N ¼ 199, 700; and
when � ¼ 394MPa, the fatigue life of 16Mn steel is N ¼ 93, 500.

A comparison of experimental data and predicted results using equations (1), (6), and (19) is listed
in Tables 1 to 5. According to Tables 1 to 5, it should be noted that among these three models,
Miner’s rule has the simplest form and is easiest to be used for calculation. But because of its
linearity, it has the maximum life prediction error. For the original model, since it has taken the
load sequence effects into account, the results of life prediction under high–low loading spectrum are
different from the results under low–high loading spectrum. For these two types of materials, using
the original model, the total damage value is larger than 1 for low–high load sequences and less than
1 for high–low load sequences. Comparing with Miner’s rule, the predicted results produced by the
original model have been improved. Then, through taking the load interaction effects into consid-
eration and using the modified model, once again the precision of prediction results is improved, and
the larger the ratio of the two-stage load amplitudes, the more obvious is the improved precision on
life prediction. Above all, by introducing an interaction factor into the original model, we can see
that the modified model gives a better life prediction under two-level stress loading (refer to
Appendix 2 for Tables 1 to 5).

In the modified model, the load interaction effects have been used to explain the strong deviation
of life predictions. In this paper we proposed a nonlinear fatigue damage model for life prediction
under variable loading conditions. However, application of the proposed model to life prediction for
different materials and multiaxial loading also needs further study.

Conclusions

The main purpose of this paper is to find a parameter to represent the load interaction effects and
then add it to an original model to improve life prediction result. The main work that has been done
is summarized as follows:

(1) According to Corten–Dolan model, Freudenthal–Heller approach, Morrow’s rule, V. Dattoma’s
model, and V. Dattoma’s model, this paper introduces a load interaction parameter.

(2) A nonlinear cumulative damage model based on physical property degradation of mater-
ials is modified, and the expression of the modified model under multilevel load spectrums is
derived.
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(3) By using the two-level cyclic fatigue test data of normalized 45 steel and 16Mn steel, a com-
parison of experimental data and predicted results is made. It is found that the modified model
gives a better life prediction than Miner’s rule and the original model.
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Appendix 1

Notation

a material constant
d material parameter
D damage variable

D Nf�1ð Þ the critical value of the damage variable
f Morrow’s plastic work interaction exponent
h fatigue strength exponent
m number of damaged nuclei
ni number of cycles at a given stress amplitude
Ni number of cycles to failure at a given stress amplitude
N the number of cycles to failure at load stress �
p stress level series
r damage evolution rate
� function in the damage model
� coefficients of the damage model
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�a applied stress amplitude
�f fatigue strength coefficient
�i the ith load stress level
�m stress level corresponding to a fatigue life of 103 � 104 cycles

�max the maximum stress of multilevel alternating load stress
!i interaction factor

Appendix 2

Table 1. Comparison between lives predicted by test data, the Miner rule, the original model, and the new model

for smooth normalized 45 steel under two-level tensile stress loading.

Two-stress

leveltest (MPa)

Load

sequences n1
n1

Nf 1
n2

Test

data
n2

Nf 2

Miner

rule
n2

Nf 2

Original

model
n2

Nf 2

New

model
n2

Nf 2

331.46–284.4 High–low 500 0.010 423,700 0.8474 0.990 0.988 0.986

12,500 0.250 250,400 0.5008 0.750 0.705 0.665

25,000 0.500 168,300 0.3366 0.500 0.431 0.375

37,500 0.750 64,500 0.1290 0.250 0.186 0.141

284.4–331.46 Low–high 125,000 0.250 37,900 0.7580 0.750 0.788 0.816

250,000 0.500 38,900 0.7780 0.500 0.565 0.613

Table 2. Comparison between lives predicted by test data, the Miner rule, the original model, and the new model

for notch normalized 45 steel under two-level tensile stress loading.

Two-stress

level test (MPa)

Load

sequences n1
n1

Nf 1
n2

Test

data
n2

Nf 2

Miner

rule
n2

Nf 2

Original

model
n2

Nf 2

New

model
n2

Nf 2

284.4–331.46 Low–high 125,000 0.25 55,500 1.110 0.750 0.788 0.816

250,000 0.50 58,000 1.160 0.500 0.565 0.612

500,000 0.75 24,600 0.492 0.250 0.319 0.375

331.46–284.4 High–low 5000 0.10 421,500 0.843 0.900 0.880 0.862

12,500 0.25 337,700 0.6754 0.750 0.705 0.666

25,000 0.50 234,500 0.4690 0.500 0.431 0.375
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Table 5. Comparison between lives predicted by test data, the Miner rule, the original model, and the new model

for notch normalized 16Mn steel under two-level rotating bending stress loading.

Two-stress level

test (MPa)

Load

sequences n1
n1

Nf 1
n2

Test

data
n2

Nf 2

Miner

rule
n2

Nf 2

Original

model
n2

Nf 2

New

model
n2

Nf 2

394–345 High–low 9350 0.1000 269,500 0.6701 0.9000 0.8880 0.8731

19,700 0.2107 236,100 0.5870 0.7893 0.7658 0.7373

46,750 0.5000 159,300 0.3961 0.5000 0.4577 0.4096

56,100 0.6000 74,000 0.1840 0.4000 0.3559 0.3073

366–324 High–low 39,940 0.2000 995,670 0.7267 0.8000 0.7723 0.7469

79,880 0.4000 545,300 0.3980 0.6000 0.5535 0.5127

109,800 0.5498 448,780 0.3275 0.4502 0.3969 0.3521

139,790 0.7000 306,000 0.2233 0.3000 0.2481 0.2071

345–394 Low–high 72,400 0.1800 96,733 1.0346 0.8200 0.8386 0.8572

181,000 0.4500 82,867 0.8863 0.5500 0.5885 0.6286

197,100 0.4900 80,970 0.8660 0.5100 0.5503 0.5928

233,300 0.5800 59,750 0.6390 0.4200 0.4633 0.5098

Table 3. Comparison between lives predicted by test data, the Miner rule, the original model, and the new model

for smooth normalized 16Mn steel under two-level tensile stress loading.

Two-stress level

test (MPa)

Load

sequences n1
n1

Nf 1
n2

Test

data
n2

Nf 2

Miner

rule
n2

Nf 2

Original

model
n2

Nf 2

New

model
n2

Nf 2

562.9–392.3 High–low 2 0.0005 73,600 0.9352 0.9995 0.9993 0.9989

200 0.0504 59,400 0.7548 0.9496 0.9321 0.9040

1000 0.2520 56,300 0.7154 0.7480 0.6736 0.5672

1700 0.4284 47,600 0.5411 0.6176 0.5191 0.3903

372.65–392.3 Low–high 38,900 0.1450 75,500 0.9590 0.8550 0.8550 0.8617

64,400 0.2400 62,800 0.7980 0.7600 0.7600 0.7705

116,000 0.4330 62,900 0.7990 0.5670 0.5670 0.5833

Table 4. Comparison between lives predicted by test data, the Miner rule, the original model, and the new model

for notch normalized 16Mn steel under two-level tensile stress loading.

Two-stress

level test (MPa)

Load

sequences n1
n1

Nf 1
n2

Test

data
n2

Nf 2

Miner

rule
n2

Nf 2

Original

model
n2

Nf 2

New

model
n2

Nf 2

166.71–294.2 Low–high 260,000 0.25 52,500 0.9492 0.75 0.7971 0.8794

520,000 0.50 37,900 0.6852 0.50 0.5791 0.7338

780,000 0.75 18,500 0.3345 0.25 0.3353 0.5384

294.2–166.71 High–low 13,800 0.25 497,400 0.4788 0.75 0.6943 0.5252

27,700 0.50 343,900 0.3310 0.50 0.4151 0.2119

Lv et al. 181

 at Shanghai Jiaotong University on March 14, 2015ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/

