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Reliability-Based
Multidisciplinary Design
Optimization Using Subset
Simulation Analysis and Its
Application in the Hydraulic
Transmission Mechanism
Design
The Monte Carlo simulation (MCS) can provide high reliability evaluation accuracy.
However, the efficiency of the crude MCS is quite low, in large part because it is compu-
tationally expensive to evaluate a very small failure probability. In this paper, a subset
simulation-based reliability analysis (SSRA) approach is combined with multidisciplinary
design optimization (MDO) to improve the computational efficiency in reliability-based
MDO (RBMDO) problems. Furthermore, the sequential optimization and reliability
assessment (SORA) approach is utilized to decouple an RBMDO problem into a sequen-
tial of deterministic MDO and reliability evaluation problems. The formula of MDO with
SSRA within the framework of SORA is proposed to solve a design optimization problem
of a hydraulic transmission mechanism. [DOI: 10.1115/1.4029756]

1 Introduction

In multidisciplinary systems, uncertainties will be propagated
among coupled disciplines and may cause design solutions to be
unsafe [1]. To solve this problem, many methods have been pro-
posed to address the reliability evaluation and optimization issues
in MDO, and they are so-called RBMDO [2–20]. In some situa-
tions, the extremely high reliability of products is required. To
evaluate the reliability accurately, MCS can be employed. MCS is
robust and accurate if sufficient samples are used [21,22]. It can
solve reliability evaluation problems with different distribution
types and high dimensional randomness. However, the crude
MCS is not suitable to the case where the failure probability to be
evaluated is very small (e.g., pf � 10�7). It is because that evalu-
ating failure probability (or reliability) of highly reliable products
requires an extremely large number of samples in the crude MCS,
leading to the low efficiency.

In this paper, RBMDO problems with rare failure events are
investigated. Based on the subset simulation strategy [23], an orig-
inal reliability evaluation problem of a rare failure event is
replaced by a series of reliability evaluation problems of more fre-
quent failure events in conditional probability spaces and initial
conditional probability space. The modified Metropolis algorithm
is utilized to generate offspring samples of each intermediate fail-
ure event. The SORA strategy is also utilized to further improve
the computational efficiency.

The paper is organized as follows. In Sec. 2, the RBMDO for-
mulation is given. Existing reliability evaluation methods used in
RBMDO are also briefly reviewed. In Sec. 3, the details of SSRA
are introduced. In Sec. 4, the procedure of MDO with SSRA
within the framework of SORA (called MDO-SSRA-SORA) is
proposed. In Sec. 5, the proposed method is implemented to solve
a design optimization problem of a hydraulic transmission mecha-
nism. Section 6 concludes the paper.

2 The Simulation and Approximation Methods for the

Reliability Evaluation in RBMDO Problems

2.1 The RBMDO Formulation. The mathematical formula-
tion of the RBMDO is given as
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min
XDV

f d;lX;lXs
;lY

� �
s:t: Pr gi d;X;Xs;Yð Þ � 0½ � � Ri½ � ¼ 1� pfi

� �
;

dL � d � dU;XL � lX � XU;XL
s � lXs

� XU
s ;

YL � lY � YU;XDV ¼ d;lX;lXs
;lY

� �
; i ¼ 1; 2;…; n

(1)

where f �ð Þ denotes a system objective function; gi �ð Þ< 0 denotes
the safe region; gi �ð Þ> 0 denotes the failure region, and gi �ð Þ ¼ 0
is defined as the limit state surface which is the boundary between
safe and failure regions. Ri½ � is the demand reliability for

Pr gi �ð Þ � 0½ �. pfi

� �
is the acceptable failure probability for

gi �ð Þ > 0. XDV denotes the vector of design variables. d denotes
the vector of deterministic design variables. X denotes the vector
of the random discipline design variables. Xs denotes the vector
of the random shared design variables. Y denotes the vector of the
linking variables. Y ¼ Y�i;Yi�f g, i ¼ 1; 2;…; n, Y�i are input link-
ing variables to the i th discipline and Yi� are output linking varia-
bles from the i th discipline. l denotes the mean value of random
variables. Superscripts L and U denote the lower and upper
bounds, respectively. n denotes the total number of disciplines.

2.2 Simulation and Approximation Methods for the Reli-
ability Evaluation. In Eq. (1), the reliability constraint Pr �ð Þ is
used to guarantee the system reliability. We express the functional
relationship between performance G and deterministic variables,
random variables by G ¼ g d;XRð Þ, where XR denotes the vector
of random design variables, XR ¼ X;Xs;Yf g. Commonly used
simulation and approximation methods to evaluate Pr �ð Þ can be
roughly categorized into three types [24]: (1) sampling based
methods, (2) moment matching methods, and (3) most probable
point (MPP) based methods. Sampling based methods [25–30],
such as the crude MCS, Latin hypercube sampling, and impor-
tance sampling, are flexible to use and can provide an accurate
estimation of probability if sufficient samples are used. However,
it is not efficient where the higher reliability is required or
performance functions are computationally expensive. For

example, 1015 samples are required for MCS to estimate a failure

probability with 10�7 under the precision measure d ¼ 10�4,

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pf

� �� �
= pf

� �
N

� �q
, N is the sample size. The value

of d can be used to reflect the confidence level of numerical
results. The less d we have, the higher confidence level of reliabil-
ity estimation we obtain. Moment matching methods are usually
employed to ease the computational difficulty [31,32], which
approximate the distribution of a performance function by fitting
its first few moments. Many approaches, such as numerical inte-
grations, point estimate methods [33,34], and Taylor series
approximations [35], are proposed to calculate moments. Though
moment matching methods are more efficient, it is less accurate
than sampling based methods generally [25]. The MPP based
method can obtain a good balance between efficiency and accu-
racy. Typical MPP based methods, such as first order reliability
method (FORM) and second order reliability method (SORM)
[36–38], approximate a performance function with the Taylor
expansion at MPP to ensure the minimal accuracy loss. However,
in FORM and SORM, original random variables should be
transformed into standard normal variables by Rosenball
transformation [39]. The transformation process may increase the
nonlinearity of a performance function [40]. To avoid the transfor-
mation, first order saddlepoint approximation (FOSA) is proposed
[41]. However, an extra optimization problem is introduced to
finding most likelihood point in FOSA, which needs more func-
tion evaluations [25].

In some extreme working conditions, rare failure events may
happen. Thus, accurate reliability estimation for these rare failure
events is necessary. However, sometimes it is hard to balance
accuracy and efficiency in practical engineering. To improve the
efficiency of reliability estimation while sustaining the high

accuracy, subset simulation method was proposed [42]. The sub-
set simulation method has been widely used to solve different reli-
ability evaluation problems, such as reliability-based design
optimization problems [43,44], reliability benchmark problems
[45], and dynamic systems analysis problems [46,47].

3 SSRA Approach

3.1 The Basic Idea of Subset Simulation. The basic idea of
subset simulation is that a small probability can be calculated
using a product of an initial probability and a series of conditional
probabilities with greater values. Then the reliability evaluation
problem of rare event can be converted into a series of reliability
evaluation problems of an initial event and more frequent condi-
tional events. Use F to denote a target failure event in the random
variables space Rn. Denote a decreasing sequence of failure events
as F1 � F2 � � � � � Fm ¼ F, Fm ¼

Tm
j¼1 Fj, where Fj is an inter-

mediate failure event for j ¼ 2 	 m or an initial failure event for
j ¼ 1, and m is the number of failure regions. Fm ¼ Fð Þ is the fail-
ure event of interest. By the definition of conditional probability,
the failure probability can be expressed as a product of a sequence

of conditional failure probabilities P Fj

		Fj�1

� �
: j ¼ 2; 3;…;m

� �
and the initial failure probability P F1ð Þ as shown in [22]

PF ¼ P Fmð Þ ¼ P
\m
j¼1

Fj

 !
¼ P FmjFm�1ð ÞP

\m�1

j¼1

Fj

 !
¼ � � �

¼ P F1ð Þ
Ym
j¼2

P Fj Fj�1

		� �
(2)

3.2 Markov Chain Monte Carlo and the Modified Metrop-
olis Algorithm. Markov chain Monte Carlo (MCMC) is a power-
ful tool to generate random samples and can be used in
calculating statistical estimation and marginal and conditional
probabilities [48]. MCMC has been used in Bayesian updating of
structural models and reliability [49], estimation of small failure
probabilities [22], and probabilistic inference [50]. As a specific
implementation of MCMC, the Metropolis algorithm can simulate
samples as the states of Markov chain which has the target distri-
bution as its limiting stationary distribution under the assumption
of ergodicity [22,47]. Use p to denote a probability density func-
tion (PDF). The significance of the Metropolis algorithm is that if

a sample distributes as the conditional distribution p �jFj

� �
, a new

offspring sample can be generated as the next state of the Markov

chain which will also be distributed as p �jFj

� �
. However, the

Metropolis algorithm is not applicable in high dimensional space.
It is because a zero acceptance ratio for the next candidate state
results in extremely repeated samples in Markov Chain [42]. To
solve this problem, a modified Metropolis algorithm is proposed
[22]. In the modified Metropolis algorithm, a group of one-
dimensional proposal PDFs are used, instead of an n-dimensional
proposal PDF which is used in Metropolis algorithm. Thus, the
acceptance ratio of individual sample can remain nonvanishing in
spite of the increasing of dimension [22]. The details of the modi-
fied Metropolis algorithm are given as follows.

For every t ¼ 1;…;Nj, let p
j n XR;j tð Þ
		� �

, called the proposal
PDF, be a one-dimensional PDF for n centered at XR;j tð Þ with the

symmetry property p
j njþ1 tð Þ XR;j tð Þ
		� �

¼ p
j XR;j tð Þ njþ1 tð Þ
		� �

.

Generate a sequence of samples XR;1;XR;2;…
� �

from a given

sample XR;1 by computing XR;jþ1 from XR;j ¼ XR;j 1ð Þ;XR;j 2ð Þ;
�

…;XR;j Nj

� �
�, j ¼ 1; 2; � � �. This process includes two steps.

Step 1: Generate a candidate state ~XR;jþ1: For each component
XR;j tð Þ, t ¼ 1;…;Nj, simulate njþ1 from p
j njþ1 tð Þ XR;j tð Þ

		� �
.

Calculate the acceptance ratio

rjþ1 tð Þ ¼ p njþ1 tð Þ
� �

=p XR;j tð Þ
� �

(3)
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Set the t th component of ~XR;jþ1 according to

~XR;jþ1 tð Þ ¼ njþ1 tð Þ with probability min 1; rjþ1 tð Þ
� �

XR;j tð Þ with probability 1�min 1; rjþ1 tð Þ
� �


(4)

Step 2: Accept/reject ~XR;jþ1: Check the location of njþ1 tð Þ. If
~XR;jþ1 2 Fj, accept it as the next sample, XR;jþ1 ¼ ~XR;jþ1; other-
wise reject it and take the current sample XR;j as the next sample,
XR;jþ1 ¼ XR;j.

Based on experience in Ref. [42], the PDF of the uniform distri-
bution, which is centered at the current sample with width equal
to two times of the standard deviation of last simulation level, is a
good candidate as the proposal PDF.

3.3 Subset Simulation Procedure. By using the modified
Metropolis algorithm, the subset simulation proceeds as follows.

Step 1: Evaluate the initial failure probability P F1ð Þ at the first
simulation level by MCS as

P F1ð Þ � P̂1 ¼
1

N1

XN1

k¼1

IF1
XR;1

� �
(5)

where P̂1 is the estimator; N1 is the sample size; IF1
�ð Þ is an indica-

tor function, IF1
XR;1

� �
¼ 1 if XR;1 2 F1 and IF1

XR;1

� �
¼ 0 other-

wise; XR;1 is a vector of samples XR;1 tð Þ which are independently

and identically distributed according to p XR;1

� �
and present an

uncertain state of the system, XR;1 ¼ XR;1 tð Þ : t ¼ 1;…;N1

� �
.

Step 2: Evaluate the conditional failure probabilities at each sim-
ulation level by MCMC based on the modified Metropolis algo-
rithm. In the MCMC, the “seeds” samples of subset jþ 1 are from
the samples which are in subset j and belong to the failure event Fj.
Then the conditional failure probabilities can be calculated by

P Fjþ1

		Fj

� �
� P̂jþ1 ¼

1

Njþ1

XNjþ1

k¼1

IFjþ1
XR; jþ1

� �
(6)

where the conditional PDF of XR; jþ1 is p XR; jþ1

		Fj

� �
.

Step 3: Finally, combining Eqs. (2), (5), and (6), the failure
probability estimator is

PF � P̂F ¼
Ym
j¼1

P̂j (7)

4 MDO Within the Framework of SORA

4.1 The Strategy of SORA. The strategy of SORA is devel-
oped to improve the optimization efficiency of RBMDO [51,52].
SORA employs a sequential of cycles of MDO and reliability
evaluation. In each cycle, the reliability evaluation is conducted
after MDO [51]. The procedure of SORA is illustrated in Fig. 1.

4.2 The Procedure of MDO-SSRA-SORA. In this section,
we combine SSRA with MDO within the strategy of SORA. The
detailed procedure of MDO-SSRA-SORA is given as follows.

Step 1: Solve an MDO problem with deterministic constraint
G ¼ g d;lXR

� �
� 0. In this paper, the engineering design optimi-

zation problem is considered as low couplings. So we can use the
collaborative optimization (CO) method here. As a hierarchical
MDO method, CO has a system optimization problem and disci-
pline optimization problems. The system optimization problem
minimizes the system objective f while satisfying the compatibil-
ity constraints Ji. The discipline optimization problems use com-
patibility constraints Ji as discipline objectives and minimize
them while satisfying the discipline constraints. The discipline
constraints are the original constraints in Eq. (1). The system opti-
mization problem is given as

min
XDV

f dsys;lXsys ;lX
sys
s
;lYsys

� �
s:t: Ji ¼ dsys � ddis;i

� �2þ lXsys � lXdis
i

� �2

þ lX
sys
s
� lXdis

s

� �2

þ lYsys � lYdisð Þ2� e;

XDV ¼ dsys;lXsys ; lX
sys
s
; lYsys

n o
; i ¼ 1; 2;…; n (8)

The discipline optimization problems are given as

min
XDV

Ji ¼ dsys � ddis;i
� �2þ lXsys � lXdis

i

� �2

þ lX
sys
s
� lXdis

s

� �2

þ lYsys � lYdisð Þ2

s:t: gi ddis
i ; lXdis

i
; lXdis

s
;lYdis

� �
� 0;dL � ddis

i � dU;XL � lXdis
i
� XU;

XL
s � lXdis

s
� XU

s ;Y
L � lYdis � YU;XDV ¼ ddis

i ; lXdis
i
; lXdis

s
;lYdis

n o
; i ¼ 1; 2;…; n

(9)

where superscripts “sys” and “dis” denote system and discipline,

respectively. The solutions d 1ð Þ and l
1ð Þ

XR
can be obtained from

Eq. (8) when the optimization problems in Eqs. (8) and (9)
converge. The superscript (1) denotes the first cycle,

l
1ð Þ

XR
¼
�
l

1ð Þ
X ;l

1ð Þ
Xs
;l

1ð Þ
Y

�
.

Step 2: Run MCS to evaluate the probability of
G ¼ g d;XRð Þ � 0. The initial reliability of G ¼ g d;XRð Þ � 0 is
only around 0.5 because uncertainty is not considered. Thus MCS
can be applied directly in the fist cycle. Suppose there are N
simulation samples. The failure probability estimator is P Fð Þ
� P̂F ¼ 1

N

PN
t¼1 IF XR tð Þð Þ, where IF �ð Þ is an indicator function,

IF XRð Þ ¼ 1 if XR 2 F and IF XRð Þ ¼ 0 otherwise. And then all
simulation samples in an ascending order are listed according

to the performance values of G
�
d 1ð Þ;X

1ð Þ
R

�
, i.e., G

�
d 1ð Þ;X

1ð Þ
R1

�
< G

�
d 1ð Þ;X

1ð Þ
R2

�
< � � � < G

�
d 1ð Þ;X

1ð Þ
RN

�
.

Find the smallest value Gs¼min
�

G
�
d 1ð Þ;X

1ð Þ
Ri

�		i¼ int
�
R�N

��
in the sequence G

�
d 1ð Þ;X

1ð Þ
R1

�
<G

�
d 1ð Þ;X

1ð Þ
R2

�
< � � �<G

�
d 1ð Þ;X

1ð Þ
RN

�
to obtain a simulation MPP (SMPP), XSMPP¼ XRi g d;XRið Þjf
¼Gsg. The notation of int R�Nð Þ is the integer part of number
R�Nð Þ. Considering the randomness of computer simulation, the

simulation can run n times and SMPP can be decided by the average
results.

Fig. 1 The procedure of SORA
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Step 3: In the first cycle, the failure probability is much larger
than the acceptable failure probability. Therefore, a shifting vector

S 1ð Þ, S 1ð Þ ¼ l
1ð Þ

XR
� X

1ð Þ
SMPP, is constructed to move Gs to the safe

region, which is shown in Fig. 2. S ¼ sX; sXs
; sYf g.

Step 4: Use CO to solve MDO with shifted constraints. The sys-
tem optimization problem is shown in Eq. (8), and the discipline
optimization problems are shown in Eq. (10). And then we obtain
solutions of the k th cycle d kð Þ, l

kð Þ
XR

.

min
XDV

Ji ¼ d
sys; kð Þ
i � d

dis; kð Þ
i

� �2

þ l
kð Þ

X
sys

i

� l
kð Þ

Xdis
i

� �2

þ l
kð Þ

X
sys
s
� l

kð Þ
Xdis

s

� �2

þ l
kð Þ

Ysys � l
kð Þ

Ydis

� �2

s:t: gi d
dis; kð Þ
i ;l

kð Þ
Xdis

i

� s
kð Þ

Xdis
i

;l
kð Þ

Xdis
s

� s
kð Þ

Xdis
s

; l
kð Þ

Ydis � s
kð Þ

Ydis

� �
� 0;

dL � d
dis; kð Þ
i � dU;

XL � l
kð Þ

Xdis
i

� XU;XL
s � l

kð Þ
Xdis

s

� XU
s ;Y

L � l
kð Þ

Ydis � YU;

XDV ¼ d
dis; kð Þ
i ; l

kð Þ
Xdis

i

; l
kð Þ

Xdis
s

; l
kð Þ

Ydis

n o
; i ¼ 1; 2;…; n (10)

Step 5: Define an initial failure event and m� 1 conditional failure

events Fj ¼
�

X
kð Þ

R : g
�
d;X

kð Þ
R

�
> Gj; j ¼ 1; 2;…;m� 1

�
. To ease

the simulation, m can be equated to the magnitude index of
acceptable failure probabilistic. Denote a failure event Fm as

Fm¼ XR :g d;XRð Þ>0f g. The probability of P
kð Þ

F ¼ Pr
�
g
�
d kð Þ;X

kð Þ
R

�
> 0
�

is calculated by P
kð Þ

F ¼ P kð Þ F1ð Þ
Qm�1

j¼1 P kð Þ Fjþ1 Fj

		� �
; The con-

ditional failure probabilities P kð Þ Fjþ1

		Fj

� �
are calculated by

P Fjþ1

		Fj

� �
� P̂jþ1 ¼ ð1=Njþ1Þ

PNjþ1

k¼1 IFjþ1
XR; jþ1

� �
; and the first

failure probability P kð Þ F1ð Þ is calculated by MCS directly.
Step 6: Once P

kð Þ
F is obtained, it is compared with pf

� �
. If

P
kð Þ

F < pf

� �
and the value of objective is stable, the algorithm con-

verges; if P
kð Þ

F � pf

� �
, define the desired final conditional failure

probability as

P
kð Þ

desire FmjFm�1ð Þ ¼
pf

� �
P kð Þ Fm�1ð Þ ¼

pf

� �
P kð Þ F1ð Þ

Qm�1

j¼1

P kð Þ Fjþ1 Fj

		� �
¼ P G � Gs G � Gm�1jð Þ (11)

where P
kð Þ

desire FmjFm�1ð Þ is the expected probability of the failure

event of interest and satisfies P kð Þ Fm�1ð Þ � P
kð Þ

desire FmjFm�1ð Þ
¼ pf

� �
. Like at step 2, we find SMPPs again by listing all MCMC

samples in an ascending order according to their performance val-

ues and construct the shifting vector S kð Þ ¼ l
kð Þ

XR
� X

kð Þ
SMPP. Then go

to step 1.
The MDO-SSRA-SORA process is performed until P

kð Þ
F < pf

� �
and the value of objective is stable. The flowchart of MDO-
SSRA-SORA is illustrated in Fig. 3.

4.3 Numerical Example. In this section, a numerical exam-
ple is given to show the proposed method in detail. We also com-
bine mean value first order second moment (MVFOSM), FORM,
SORM, and MCS with CO to solve this problem. The proposed
method is compared with them. The solutions obtained by MCS
based RBMDO (MDO-MCS) are used as reference.

The formulation of mathematical example is given in Eq. (12).

Find lx1
; lx2

; lx3
; y12; y21

min f ¼ y12 � 1ð Þ2þl2
x1
þ l2

x2
þ y21 � 2ð Þ2þl2

x3

s:t: Pr1 g1 ¼ x1x2
2 þ y12 � 0:4 � 0

� �
� 0:9985 ¼ 1� pf

� �
;

Pr2 g2 ¼ x2
3 þ y2

12 þ y21 � 1:75 � 0
� �

� 0:9985 ¼ 1� pf

� �
;

y12 ¼ lx1
� lx2

þ 2y21; y21 ¼ lx3
� y12; � 5 � lx1

� 0;

0 � lx2
� 1; 0 � lx3

� 5; 0 � y12 � 10; 0 � y21 � 10

(12)

There are two disciplines in this problem, which is shown in
Fig. 4. f is the system objective; x1, x2 and x3 are discipline design
variables in discipline 1 and discipline 2, respectively; y12 and y21

are linking design variables. The detailed uncertainty information
is given in Table 1.

The acceptable failure probability pf

� �
of each reliability

constraint is 1:5� 10�3. In SORA, the MDO problem includes
the system optimization problem in Eq. (13) and the discipline
optimization problems in Eqs. (14) and (15).

Fig. 3 The flowchart of MDO-SSRA-SORAFig. 2 The schematic diagram of shifting constraint boundary
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(1) System optimization problem

Find lxsys

1
; lxsys

2
; lxsys

3
; ysys

12 ; y
sys
21

min f ¼ ysys
12 � 1

� �2þ lxsys

1

� �2

þ lxsys

2

� �2

þ ysys
21 � 2

� �2þ lxsys

3

� �2

s:t: J1 � e; J2 � e (13)

(2) Optimization problem for discipline 1

Find lxdis1
1
;lxdis1

2
; ydis1

12 ; ydis1
21

min J1 ¼ lxsys

1
� lxdis1

1

� �2

þ lxsys

2
� lxdis1

2

� �2

þ ysys
12 � ydis1

12

� �2þ ysys
21 � ydis1

21

� �2

s:t: lxdis1
1
� s

kð Þ
xdis1

1

� �
lxdis1

2
� s

kð Þ
xdis1

2

� �2

þ ydis1
12 � 0:4 � 0; � 5 � lxdis1

1
� 0;

0 � lxdis1
2
� 1; 0 � ydis1

21 � 10; 0 � ydis1
12 � 10; ydis1

12 ¼ lxdis1
1
� lxdis1

2
þ 2ydis1

21

(14)

(3) Optimization problem for discipline 2

Find lxdis2
3
; ydis2

12 ; ydis2
21

min J2 ¼ lxsys

3
� lxdis2

3

� �2

þ ysys
12 � ydis2

12

� �2þ ysys
21 � ydis2

21

� �2

s:t: lxdis2
3
� s

kð Þ
xdis2

3

� �2

þ ydis2
12

� �2þ ydis2
21 � 1:75 � 0;

0 � lxdis2
3
� 5; 0 � ydis2

12 � 10; 0 � ydis2
21 � 10; ydis2

21 ¼ lxdis2
3
� ydis2

12 (15)

The compatibility constraint accuracy e is 0.001. Because the

acceptable failure probability pf

� �
¼ 1:5� 10�3 ¼ 1:5� 10�1ð Þ3,

the magnitude index is three. We subdivide the failure event into

an initial failure event and two conditional failure events, which

are predefined as P1 ¼ 1:5� 10�1, P2 F1ð Þ ¼ 10�1 and

P3 F2ð Þ ¼ 10�1. After k ¼ 3 cycles, the optimal solutions are
obtained, shown in Table 2.

We can see that MDO-MVFOSM and MDO-FORM enjoy the
higher computational efficiency, however less accuracy. MDO-
SSRA and MDO-SORM need almost the same computational time.
However, solutions from MDO-SSRA are closer to accurate solu-
tions, compared with solutions from MDO-SORM. MDO-MCS
needs longer computational time than MDO-SSRA. It is because
more simulation samples are needed using MDO-MCS. To evalu-
ate the failure probability under d ¼ 0:1, MCS needs 2� 105 sam-
ples. However, SSRA only needs 2� 3� 103 samples.

5 The Hydraulic Transmission Mechanism Design

The hydraulic transmission mechanism comprised rails, sliders,
and a connecting rod, which is shown in Fig. 5. The rotation pro-
cess is as follows: the connecting rod rotates around the axle B;
the sliders move on the rails; the moving section rotates around
the axle A; the hydraulic transmission mechanism completes the
whole moving cycle from the initial position E to the final
position E00.

Table 1 Distribution details of random design variables in the
numerical example

Variables Mean Standard deviation Distribution

x1 lx1
0:01lx1

Normal
x2 lx2

0:01lx2
Normal

x3 lx3
0:01lx3

Normal

Table 2 Solutions of the numerical example

MDO-SSRA MDO-MCS MDO-MVFOSM MDO-FORM MDO-SORM

lx1
�0.2932 �0.2909 �0.3312 �0.3205 �0.3012

lx2
0.2920 0.2898 0.2957 0.3005 0.2991

lx3
0.7961 0.7760 0.8601 0.8523 0.8054

y12 0.3357 0.3238 0.3644 0.3612 0.3368
y21 0.4604 0.4522 0.4957 0.4911 0.4686
f 3.6166 3.6236 3.6038 3.6043 3.6139
time (s) 31 119 17 21 30

Fig. 4 The MDO problem of the numerical example
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The objective is maximizing the folding torque M. There are
two disciplines, the power transmission discipline and the power
input discipline, as shown in Figs. 6 and 7. There are eight design
variables X ¼ xB; yB; l; a; xE; yE;D;b½ �, three design parameters
P ¼ P;E; d½ �, and three linking variables Y ¼ xC; yC;F½ �. The
detailed design information is given in Table 3 and also shown in
Fig. 8. The coupled information is shown in Fig. 9. Here, all of
random variables are assumed to be normally distributed,
X 	 N lX; 0:01lXð Þ, where lX is the mean of design variables,
and the standard deviation is 0:01lX. Then the RBMDO model of
this problem is given as follows:

Fig. 5 The structure sketch of a hydraulic transmission mechanism

Fig. 6 The power transmission discipline

Fig. 7 The power input discipline

Table 3 Design variables and design parameters of a hydraulic transmission mechanism

Description Initial value Lower bound Upper bound

Design variables of the power input discipline xB (mm) The abscissa of B 125 0 954
yB (mm) The ordinate of B �104 �208 0
l (mm) The length of connecting rod 146 132 160
a (deg) Initial angle of connecting rod 5.5 4.5 6.5

Design variables of the power
transmission discipline

xE (mm) The abscissa of E 948 0 954
yE (mm) The ordinate of E �114 �208 0
D (mm) The diameter of hydraulic cylinder 100 80 120

Shared design variables b(deg) Initial angle of rail 5 3.5 6.5

Linking variables xC The abscissa of C 270 0 954
yC(mm) The ordinate of C �90 �208 0
F(N) The axial force of hydraulic rod 8:48� 104 — 12:2� 104

Design parameters P(Pa) Hydraulic Pressure 1080 — —
E(GPa) Elastic modulus of carbon steel

AISI 1045 for fixed bearing,
connecting rod, rail and hydraulic rod

209 — —

d(mm) The diameter of hydraulic rod 56 — —

Fig. 8 The design variables and design parameters shown in the sketch
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Max M ¼ M lxB
;lyB

;ll;la; lb; lxE
; lyE

; lD

� �
s:t: Pr1 rFixed Bearing xB; yB; l; a;b;Fð Þ � r½ �

� �
� 1� pf

� �
;

Pr2 rConnecting Rod xB; yB; l; a; b;Fð Þ � r½ �
� �

� 1� pf

� �
;

Pr3 rRail xE; yE;D; b; xC; yCð Þ½ � � r½ � � 1� pf

� �
;

Pr4 rHydraulic Rod xE; yE;D; b; xC; yCð Þ � r½ �
� �

� 1� pf

� �
;

0 � lxB
; xC;lxE

� 954; � 208 � lyB
; yC;lyE

� 0;

132 � ll � 160; 4:5 � la; lb � 6:5;

80 � lD � 120;F � 12:4� 105 (16)

where xC ¼ l� cos aþ xB; yC ¼ l� sin aþ yB; F ¼ P� 106

�ðp=4Þ � D� 10�4ð Þ2; Pr �ð Þ is the reliability constraints, pf

� �
¼ 2� 10�6; r �ð Þ is the stress constraint of component; r½ � is the
yield strength. Here, the material is carbon steel AISI 1045, thus
r½ � ¼ 505 MPa.

As shown in Fig. 10, we use the response surface method to
construct the functions M �ð Þ and r �ð Þ. The response surface mod-
eling postulates models

M Dð Þ ¼ M̂ Dð Þ þ x

r Dð Þ ¼ r̂ Dð Þ þ x
(17)

where x is random error and assumed to be independent and iden-
tically normally distributed at each observation; M̂ Dð Þ and r̂ Dð Þ
are quadratic polynomial functions of design variables D

M̂ Dð Þ ¼ u0 þ
X8

i¼1

uiDi þ
X8

i¼1

uiiD
2
i þ

X
i

X
j>i

uijDiDj

r̂ Dð Þ ¼ k0 þ
X6

i¼1

kiDi þ
X6

i¼1

kiiD
2
i þ

X
i

X
j>i

kijDiDj

(18)

The parameters of polynomials in Eq. (18) can be determined
by the least-squares regression as

u¼ D0designDdesign

h i�1

D0designM and d¼ D0designDdesign

h i�1

D0designr

(19)

where Ddesign is the design matrix of samples; D0design is its trans-
pose; M and r can be obtained by simulation.

Fig. 9 The coupled information of a hydraulic transmission mechanism MDO problem

Fig. 10 The application of response surface model modeling
technique

Table 4 Solutions of structure optimization of a hydraulic transmission mechanism

MDO-SSRA MDO-MCS MDO-MVFOSM MDO-FORM MDO-SORM

lxB
(mm) 126.56 126.01 126.85 126.73 126.59

lyB
(mm) �109.24 �109.32 �110.02 �109.75 �109.44

ll (mm) 148.42 149.17 152.57 151.28 150.31
la (deg) 5.64 5.67 5.71 5.70 5.69

lxE
(mm) 946.98 947.25 945.38 945.91 946.32

lyE
(mm) �113.41 �113.69 �113.01 �113.24 �113.34

lD (mm) 110 108 116 116 112

lb (deg) 3.72 3.74 3.77 3.77 3.75

xC (mm) 274.26 274.45 274.69 274.61 274.52
yC (mm) �94.65 �94.58 �94.37 �94.40 �94.68
F (N) 10:26� 104 9:89� 104 11:41� 104 11:41� 104 10:64� 104

rFixed Bearing (MPa) 221.45 222.66 228.76 227.35 222.68
Pr1 99.9999% 99.9998% 99.9999% 99.9999% 99.9999%
rConnecting Rod (MPa) 170.55 179.01 210.11 201.95 185.24
Pr2 99.9998% 99.9998% 99.9998% 99.9998% 99.9998%
rRail (MPa) 264.87 265.40 275.32 274.28 270.24
Pr3 99.9998% 99.9999% 99.9998% 99.9998% 99.9998%
rHydraulic Rod (MPa) 375.33 377.53 384.12 383.94 379.27
Pr4 99.9998% 99.9999% 99.9999% 99.9999% 99.9998%
M (N�m) 36593.592 36502.547 37112.541 36967.258 36709.325
time (s) 123 585 66 87 121
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In this example, we also use MDO-MVFOSM, MDO-FORM
and MDO-SORM for comparison. After k ¼ 3 cycles, the solu-
tions are obtained and listed in Table 4, respectively. Compared
with the folding torque M ¼ 37112:541 N�mð Þ from MDO-
MVFOSM and M ¼ 36967:258 N�mð Þ from MDO-FORM, the
solutions M ¼ 36593:592 N�mð Þ from MDO-SSRA and
M ¼ 36709:325 N�mð Þ from MDO-SORM are closer to the ref-
erence M ¼ 36502:547 N�mð Þ from MDO-MCS, although using
greater computational expense. MDO-SSRA and MDO-SORM
have almost the same computational efficiency. However, more
conservative solutions can be obtained by MDO-SSRA. Further-
more, the failure event is subdivided into an initial failure event
and five sequential partial failure events using MDO-SSRA. Each

conditional failure probability is predefined to Pi Fj

� �
¼ 0:1,

i ¼ 1 	 4; j ¼ 1 	 6. 4� 6� 103 simulation samples are needed

in MDO-SSRA compared with 4� 108 simulation samples in
MDO-MCS under d ¼ 0:1. Thus MDO-SSRA is more efficient
than MDO-MCS. Compared with the initial solutions, there are
three improvements in the solutions from MDO-SSRA, shown in
Figs. 11(a)–11(c). They are increasing the length of the connect-
ing rod, reducing the ordinate of point B and increasing the value
of angle a, respectively. All improvements increase the normal
component of the hydraulic driving force, which can enhance the
folding torque M.

6 Conclusions

In this paper, a subset simulation-based decouple-loop RBMDO
approach, MDO-SSRA-SORA, is proposed to improve the

computational efficiency. SSRA and CO are combined within the
framework of the SORA strategy. In SSRA, an initial probability
and a sequence of larger conditional probabilities are calculated
instead of calculating the probability of failure event of interest
directly. We use the modified Metropolis algorithm to obtain off-
springs of simulation samples. A hydraulic transmission mecha-
nism optimization problem is taken as an example to show the
engineering application of the proposed method. Compared with
MDO-MCS, MDO-SSRA can enjoy higher efficiency when calcu-
lating a very small failure probability. However, using CO in
MDO-SSRA may result in low computational efficiency or induce
the divergence issue. This is because CO is more suitable to solve
MDO problems with low couplings. More compatibility con-
straints are needed when there are many linking variables in
RBMDO problems. In this situation, a MDO problem will become
more complex. To solve this problem, many other MDO methods
can be introduced into MDO-SSRA. In future works, we will
introduce different MDO methods to solve RBMDO problems
with high couplings.
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