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Abstract
Non-probabilistic reliability sensitivity analysis for structural systems plays an important role in determining key design
variables that affect structural reliability strongly. Traditional non-probabilistic model assumes that all interval variables
are mutually independent. However, this assumption may not be true in practical engineering. In this article, the depen-
dency of interval variables is introduced into the non-probabilistic model by using both inequality and equality con-
straints. The non-probabilistic index model and optimization method for structural systems with interval variables,
whose state of dependence is determined by constraints, are proposed on the basis of the existing non-probabilistic
index theory. The linear optimization model is alternative when nonlinear optimization model cannot find any solution.
Non-probabilistic reliability sensitivity analysis model and optimization method for structural systems, with the interval
variables whose state of dependence is determined by constraints, are established based upon the finite difference the-
ory. The proposed method is demonstrated via several examples.
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Introduction

Reliability sensitivity analysis has been widely used in
both reliability analysis and reliability-based design
with the aim of identifying how sensitive the reliability
of systems/components with respect to the characteris-
tics of uncertain variables is. It plays an important role
in determining the key design variables that affect
structural reliability strongly.1–3 Most existing reliabil-
ity sensitivity analysis methods are based on the prob-
ability and statistics theories. That is, every statistical
parameter involved is perfectly determined and all the
parameters associated with probabilities and distribu-
tions are precisely known. The methodologies for cal-
culating reliability sensitivity based on probability
theory have been well established.3,4 However, owing
to impact from various uncertainties in practical engi-
neering, especially in the early design stage of products,
lack of data or imprecise information are inevitable,5,6

especially for aviation and aerospace systems with very

limited samples that prohibit to conduct expensive
experiments.7 Therefore, traditional probability-based
reliability sensitivity methods are difficult to handle
these situations. It is necessary to explore new reliabil-
ity sensitivity analysis theories and methods.

In order to calculate the reliability sensitivity, the relia-
bility analysis models for structural systems should be
established first. In the 1990s, Elishakoff and Ben-Haim
suggested using convex models to represent uncer-
tainty.8,9 Based upon the convex model theory, non-
probabilistic reliability principle was first introduced by
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Ben-Haim, which is different from the traditional
probability-based reliability theory.9 Recently, based
on interval arithmetic, a novel non-probabilistic relia-
bility model for structural systems was presented by
Guo et al.10 In their studies, the non-probabilistic relia-
bility index for structural systems was defined,11 and
furthermore they proposed some algorithms to calcu-
late the non-probabilistic reliability index.12 However,
in the methods proposed by Guo et al.,10–12 all interval
variables were assumed to be mutually independent.
Although some non-probabilistic reliability models
have many advantages and have been successfully
applied in engineering practices, an obvious limitation
of aforementioned methods is that all interval variables
in structural systems are assumed to be mutually inde-
pendent, which is not always true in practical engineer-
ing. Nowadays, there are some research efforts on
sensitivity analysis under non-probabilistic uncer-
tainty,13–17 and sensitivity analysis with dependent vari-
ables.18–20 In this work, a novel non-probabilistic
reliability index model and reliability sensitivity method
for structural systems, with interval variables whose
state of dependence is determined by constraints, is
proposed.

The rest of this article is organized as follows.
‘Interval arithmetic and its dependent models’ provides
a brief introduction of interval arithmetic and its
dependent models. ‘Non-probabilistic reliability index
model for structural systems with interval variables
whose state of dependence is determined by constraints’
proposes a non-probabilistic reliability index model for
structural systems with interval variables whose state of
dependence is determined by constraints. The details of
the proposed non-probabilistic reliability sensitivity
method are elaborated in ‘Non-probabilistic reliability
sensitivity analysis for structural systems with interval
variables whose state of dependence is determined by
constraints’. Two numerical examples are presented in
‘Illustrative examples and discussions’ to demonstrate
the proposed method. ‘Conclusions’ presents brief dis-
cussions and conclusions.

Interval arithmetic and its dependent
models

A closed bounded interval YL,YU½ �= YL4Y4ð
YU,Y 2 <Þ is called an interval number, where < denotes
a real number. Y is called an interval variable, whose
lower and upper bounds are YL and YU, respectively.
The midpoint �Y and radius Yr, can be calculated as

�Y=
YL +YU

2
,Yr =

YU � YL

2
ð1Þ

According to equation (1), interval variable Y can be
written in the following standardized form

Y= �Y+Yrd ð2Þ

where d 2 �1, 1½ � is called the standardized unit interval
variable. Then the midpoints and radius for interval
vector Y= Y1,Y2, � � � ,Ynð Þ can be expressed as

�Y= �Y1, �Y2, � � � , �Ynð Þ,Yr = Yr
1,Y

r
2, � � � ,Yr

n

� �
ð3Þ

For interval variables Y1 and Y2, the four basic alge-
braic operations are provided21,22

Y1 +Y2 = Y1 +Y2, �Y1 + �Y2½ � ð4Þ

Y1 � Y2 = Y1 � �Y2, �Y1 � Y2½ � ð5Þ

Y1 � Y2 = min Y1Y2,Y1
�Y2, �Y1Y2, �Y1

�Y2ð Þ,½
max Y1Y2,Y1

�Y2, �Y1Y2, �Y1
�Y2ð Þ� ð6Þ

Y1=Y2 = Y1, �Y1ð Þ � 1= �Y2, 1=Y2ð Þ, 0 62 Y2ð Þ½ � ð7Þ

Since the dependency of interval variables is
extremely complicated, it cannot be modeled by corre-
lation coefficients directly. In engineering practices, the
dependency of random variables can be modeled via
Pearson correlation coefficients when interval variables
are usually assumed to be mutually independent. In this
article, we assume that the dependency of interval vari-
ables can be determined by using both inequality and
equality constraints. For example, the length, width,
height, and density of a cantilever are all interval vari-
ables, which are represented by Y1, Y2, Y3, and Y4,
respectively. The cross-section of the beam is a constant
s. Furthermore, in order to control the whole weight of
the cantilever, its weight should be less than a given
constant w. Therefore, the dependency of the interval
variables can be determined by the following equality
and inequality constraints

h Y1,Y2ð Þ=Y1Y2 � s=0 ð8Þ

g Y1,Y2,Y3,Y4ð Þ=Y1Y2Y3Y4 � w40 ð9Þ

When performing non-probabilistic reliability analy-
sis and reliability sensitivity analysis, we should con-
sider the dependency of the interval variables Y1, Y2,
Y3, and Y4, because they satisfy the constraints obvi-
ously. In this article, we assume that the state of depen-
dence of interval variables can be determined by
equality and inequality constraints

h Yð Þ=0 ð10Þ

g Yð Þ40,m Yð Þ50 ð11Þ

where h Yð Þ, g Yð Þ, and m Yð Þ are functions with interval
variables; h Yð Þ=0, g Yð Þ40, and m Yð Þ50 are equality
and inequality constraints for interval variables,
respectively.

Since the inequality m Yð Þ50 can be transformed
into �m Yð Þ40 easily, we only consider h Yð Þ=0 and
g Yð Þ40 in this article.
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Non-probabilistic reliability index model
for structural systems with interval
variables whose state of dependence is
determined by constraints

Traditional non-probabilistic reliability index model

Let performance function of a system be denoted by
f Yð Þ, Y= Y1,Y2, � � � ,Ynð Þ is a vector consisting of all
mutually independent interval variables. Function
f Yð Þ=0 is called the limit-state function. If f Yð Þ. 0,
the system is safe. If f Yð Þ\ 0, the system fails. When
f Yð Þ is a continuous function M= f Yð Þ is an interval
variable, and its midpoint and radius are denoted by �M
and Mr, respectively. The non-probabilistic index h is
defined as10

h=
�M

Mr
ð12Þ

From equation (12), if h . 1, 8Yi 2 YL
i ,

�
YU

i � i=1, 2, � � � , nð Þ, we have f Yð Þ. 0 and the system is
safe. If h \�1, 8Yi 2 YL

i ,Y
U
i

� �
i=1, 2, � � � , nð Þ, we

have f Yð Þ\ 0 and the system falls in the failure
domain. If �14h41, 8Yi 2 YL

i ,Y
U
i

� �
i=1, 2, � � � , nð Þ,

we have f Yð Þ\ 0 or f Yð Þ. 0, and then the system is in
the uncertain domain. Generally, a larger value of h

indicates the system is more reliable. From equation
(2), we can transform the vector Y= Y1,Y2, � � � ,Ynð Þ
into the standardized unit interval space by using
Y= �Y+Yrd. Guo et al.11 extended the definition of
the non-probabilistic index h, and the extended h mea-
sured by �k k‘ is the shortest distance from coordinate
origin to the limit-state function in the standardized
unit interval space

h= min dk k‘

� �
ð13Þ

which should satisfy the constraint in

M= f Yð Þ=F dð Þ ð14Þ

where d= d1, d2, � � � , dnð Þ is a standardized unit inter-
val vector that comes from an interval vector
Y= Y1,Y2, � � � ,Ynð Þ.

In order to calculate non-probabilistic index h, we
can expand the function f Yð Þ with linear Taylor expan-
sion at the midpoints �Y= �Y1, �Y2, � � � , �Ynð Þ. The expan-
sion process can be expressed as

f Yð Þ’f �Yð Þ+
Xn
i=1

∂f

∂Yi

�����
�Y

Yi � �Yð Þ= f �Yð Þ+
Xn
i=1

∂f

∂Yi

�����
�Y

Yi
rdi ð15Þ

From equations (12) and (15), the non-probabilistic
index h can be computed by

h’
f �Yð ÞPn

i=1

∂f
∂Yi

����
�Y

Yi
r

ð16Þ

Generally, when the performance function is a highly
nonlinear function, error owing to approximation by
using equation (16) is very large. There are three meth-
ods that can be used to calculate non-probabilistic
index h, including definitional method, transforma-
tional method, and optimization method.12 It has been
proved that the optimization method is more robust
and efficient among them. M= f Yð Þ is an interval vari-
able with the lower and upper bounds ML and MU,
respectively. From equations (1), (12) and the optimiza-
tion method,12 we have

h=
MU +MLð Þ
MU �MLð Þ ð17Þ

where

ML
�
MU =min=maxf Yð Þ

s:t:

YL4Y4YU

� ð18Þ

In the standardized unit interval space, equation (18)
can be rewritten by

ML
�
MU =min=maxF dð Þ

s:t:

�14d41

� ð19Þ

Non-probabilistic reliability index model under
dependent interval variables

In the traditional non-probabilistic model, all interval
variables are assumed to be mutually independent. In
this subsection, we will propose a novel non-
probabilistic reliability index model for structural sys-
tems with interval variables whose dependence is deter-
mined by constraints.

Assume that the state of dependence of interval vari-
ables can be determined by inequality constraints
gk Yp

� �
40 and equality constraints hl Yq

� �
=0,

k, l50ð Þ.p and q denote the numbers of interval
variables in inequality and equality constraints,
Yp = Y1,Y2, � � � ,Yp; p4n

� �
, Yq = Y1,Y2, � � � ,Yp;

�
q4nÞ. From equation (1) and the definition of the
non-probabilistic index in equation (12), the non-
probabilistic index ~h for structural systems with inter-
val variables whose dependence is determined by
constraints can be expressed as

~h=
�~M

~M
r =

~M
U
+ ~M

L
	 


~M
U � ~M

L
	 
 ð20Þ

where �~M, ~Mr, ~ML and ~MU denote the midpoint, radius,
lower bound, and upper bound for the performance
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function M= f Yð Þ, respectively. From equation (20), if
~h . 1, 8Yi 2 YL

i ,Y
U
i

� �
i=1, 2, � � � , nð Þ, we have

f Yð Þ. 0 and the system is safe. If ~h \ � 1,
8Yi 2 YL

i ,Y
U
i

� �
i=1, 2, � � � , nð Þ, we have f Yð Þ\ 0 and

the system falls in the failure domain. If �14~h41,
8Yi 2 YL

i ,Y
U
i

� �
i=1, 2, � � � , nð Þ, we have f Yð Þ\ 0 or

f Yð Þ. 0, therefore, the system is in the uncertain
domain.

From equation (20), we know that the main tasks for
calculating non-probabilistic index ~h are to determine
the values of ~ML and ~MU, which can be given by

~M
L
.

~M
U
=min=max f Yð Þ

s:t:

gk Yp

� �
40 k=1, 2, � � � , np
� �

hl Yq

� �
=0 l=1, 2, � � � , nq

� �
YL4Y4YU

8>>><
>>>:

ð21Þ

In the standardized unit interval space, equation (21)
can be rewritten as

~M
L
.

~M
U
=min=max F dð Þ

s:t:

Gk dp

� �
40 k=1, 2, � � � , np
� �

Hl dq

� �
=0 l=1, 2, � � � , nq

� �
�14d41

8>>><
>>>:

ð22Þ

where Gk dp

� �
= gk Yp

� �
, and Hl dq

� �
= hl Yq

� �
.

There are many nonlinear optimization algorithms
that can be used to solve both equations (21) and (22),
such as sequential quadratic programming (SQP).23 The
optimization model in equation (21) can be expressed as

L Y,l,gð Þ= f Yð Þ � lTgk Yp

� �
� gThl Yq

� �
ð23Þ

where l and g are Lagrange multipliers. For more
details about the SQP, please see Nocedal and Wright.23

In some certain circumstances, if equation (21) is dif-
ficult to be solved, we can transform it into a linear
optimization model. gk Yp

� �
and hl Yq

� �
can be

expanded by linear Taylor expansion at the midpoints
�Yp and �Yq, and then we have

gk Yp

� �
’gk �Yp

� �
+

Xp
i=1

∂gk
∂Yi

�����
�Yp

Yi � �Yið Þ= gk �Yp

� �
+
Xp
i=1

∂gk
∂Yi

�����
�Yp

Yi
rdi

ð24Þ
hl Yq

� �
’hl �Yq

� �
+

Xq
j=1

∂hl
∂Yj
j�Yq

Yj � �Yj

� �
= hl �Yq

� �
+
Xq
j=1

∂hl
∂Yj

�����
�Yq

Yj
rdj

ð25Þ

From equations (15), (24), and (25), the nonlinear opti-
mization model in equation (21) can be approximated
by using a linear optimization model, which is given by

~M
L
.

~M
U

’min=max f �Yð Þ+
Xn
i=1

∂f

∂Yi

�����
�Y

Yi � �Yið Þ
" #

s:t:

gk �Yp

� �
+
Pp
i=1

∂gk
∂Yi

����
�Yp

Yi � �Yið Þ40 k=1, 2, � � � , np
� �

hl �Yq

� �
+
Pq
j=1

∂hl
∂Yj

�����
�Yq

Yj � �Yj

� �
=0 l=1, 2, � � � , nq

� �
YL4Y4YU

8>>>>>>>>><
>>>>>>>>>:

ð26Þ

Non-probabilistic reliability sensitivity
analysis for structural systems with
interval variables whose state of
dependence is determined by constraints

Reliability sensitivity analysis is to study how sensitive
the reliability is with respect to the characteristics
of uncertain variables. Non-probabilistic reliability
sensitivity is defined as the rate of variation in non-
probabilistic index h owing to the variation of mid-
point and radius of interval variables,7 which can be
expressed as

∂h

∂ �Y
,
∂h

∂Yr

� �
ð27Þ

From equation (27), non-probabilistic reliability sen-
sitivity for structural systems with interval variables
whose state of dependence is determined by constraints
can be defined as

∂~h

∂ �Y
,
∂~h

∂Yr

� �
ð28Þ

Since ~h cannot be expressed via an explicit function,
equation (28) has no analytical solutions. In this situa-
tion, the finite difference method is considered because
it can handle this problem easily.1,4 In engineering prac-
tices, equation (28) can be calculated by using the finite
difference method

∂~h

∂ �Yi
’

~h �Yi +D �Yið Þ � ~h �Yið Þ
D �Yi

ð29Þ

∂~h

∂Yr
i

’
~h Yr

i +DYr
i

� �
� ~h Yr

i

� �
DYr

i

ð30Þ

where D �Yi and DYr
i are the small step size of �Yi and Yr

i ,
respectively. From equation (20), we have

~h �Yi +D �Yið Þ=
~ML

�Yi +D �Yi
+ ~MU

�Yi +D �Yi

	 

~MU

�Yi +D �Yi
� ~ML

�Yi +D �Yi

	 
 ð31Þ

~h Yr
i +DYr

i

� �
=

~ML
Yr

i
+DYr

i
+ ~MU

Yr
i
+DYr

i

	 

~MU
Yr

i
+DYr

i i
� ~ML

Yr
i
+DYr

i

	 
 ð32Þ
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From equation (21), ~ML
�Yi +D �Yi

and ~MU
�Yi +D �Yi

can be
given by

~ML
�Yi +D �Yi

.
~MU

�Yi +D �Yi

	 

=min=max f Yð Þ

s:t:

gk Yp

� �
40 k=1, 2, � � � , np
� �

hl Yq

� �
=0 l=1, 2, � � � , nq

� �
YL

i +D �Yi4Yi4YU
i +D �Yi

YL
j 4Yj4YU

j j=1, 2, � � � , n, j 6¼ ið Þ

8>>>>>><
>>>>>>:

ð33Þ

~ML
Yr

i +DYr
i
and ~MU

Yr
i
+DYr

i
can be expressed as

~ML
Yr

i
+DYr

i

.
~MU
Yr

i
+DYr

i

	 

=min=max f Yð Þ

s:t:

gk Yp

� �
40 k=1, 2, � � � , np
� �

hl Yq

� �
=0 l=1, 2, � � � , nq

� �
YL

i � DYr
i4Yi4YU

i +DYr
i

YL
j 4Yj4YU

j j=1, 2, � � � , n, j 6¼ ið Þ

8>>>>>><
>>>>>>:

ð34Þ

From the linear optimization model in equation (26),
~ML

�Yi +D �Yi
and ~MU

�Yi +D �Yi
can be given by

~ML
�Yi +D �Yi

.
~MU

�Yi +D �Yi
’min=max

f �Yð Þ+
Xn
i=1

∂f

∂Yi

�����
�Y

Yi � �Yið Þ
" #

s:t:

gk �Yp

� �
+
Pp
i=1

∂gk
∂Yi

����
�Yp +D�Yi

Yi � �Yið Þ40 k=1, 2, � � � , np
� �

hl �Yq

� �
+
Pq
j=1

∂hl
∂Yj

�����
�Yq +D�Yi

Yj � �Yj

� �
=0 l=1, 2, � � � , nq

� �
YL

i +D �Yi4Yi4YU
i +D �Yi

YL
j1
4Yj14YU

j1
j1 =1, 2, � � � , n, j1 6¼ ið Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð35Þ

where �Yp = �Y1, �Y2, � � � , �Yp

� �
,�Yq = �Y1, �Y2, � � � , �Yq

� �
.

~ML
Yr

i
+DYr

i
and ~MU

Yr
i
+DYr

i
can be expressed as

~ML
Yr

i
+DYr

i

.
~MU
Yr

i
+DYr

i
’min=max

f �Yð Þ+
Xn
i=1

∂f

∂Yi

�����
�Y

Yi � �Yið Þ
" #

s:t:

gk �Yp

� �
+
Pp
i=1

∂gk
∂Yi

����
�Yp

Yi � �Yið Þ40 k=1, 2, � � � , np
� �

hl �Yq

� �
+
Pq
j=1

∂hl
∂Yj

�����
�Yq

Yj � �Yj

� �
=0 l=1, 2, � � � , nq

� �
YL

i � DYr
i4Yi4YU

i +DYr
i

YL
j1
4Yj14YU

j1
j1 =1, 2, � � � , n, j1 6¼ ið Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð36Þ

It should be noted that equations (35) and (36) are
just a supplement for equations (33) and (34) under the
situation that equations (33) and (34) do not have any
solution.

Illustrative examples and discussions

In this section, two examples are provided to demon-
strate the applications of the proposed method as well
as its effectiveness. All parameters are treated as inter-
val variables in the examples. The traditional non-
probabilistic methods where interval variables are
assumed to be mutually independent are also presented
to make a comparison.

Example 1: a cantilever

Consider a cantilever, shown in Figure 1.10 Two loads
p1 and p2 are applied to the cantilever, and the dis-
tances between the loads and the fixed end are b1 and
b2, respectively. The performance function is given by

M=mcr � p1b1 � p2b2

where mcr is the critical limit bending moment. The sum
of two loads should not be more than 7.5 kN, that is,
the dependency of the interval variables p1 and p2 is
determined by inequality constraint g p1, p2ð Þ= p1 +
p2 � 7:540. The details of interval variables are given
in Table 1. Both non-probabilistic reliability index and
non-probability reliability sensitivity for a structural
system, with interval variables whose state of depen-
dence is determined by constraint, are given in Tables 2
and 3.

(If interval variables are mutually independent, the
non-probabilistic reliability index can be calculated by
the method in Guo et al.,12 and the non-probabilistic
reliability sensitivity can be calculated by the method in
Li et al.7)

From Tables 2 and 3, we know that the results cal-
culated without considering dependency are quite dif-
ferent from that with considering dependency. For
example, the midpoint sensitivity of interval variable p1
is 20.2714 without considering dependency, while it is
0.1044 with considering dependency. The former indi-
cates that the system is more unreliable with a greater
midpoint value of p1. From Tables 2 and 3, we can
conclude that the interval variable b1 is a key variable,
which more attention should be paid to in the design
stage. The relationship between the non-probabilistic
index and interval variable b1 under the same coeffi-
cients of variation is given in Figure 2.

Example 2: harmonic drive

A harmonic drive, shown in Figure 3, is widely used in
the solar array drive mechanism and the antenna point-
ing mechanism because of its high carrying capacity,
light weight, small size, etc.17

The performance function for its life estimation is

G(Th,NV,T,K,m)=
753105

NV

Th

K T

� �3

� 87603m
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where m is the number of years; and Th, Nv, K, and T
are the rated output torque, input speed, condition fac-
tor, and nominal output torque, respectively. When
G. 0, the system is considered to be safe. When G\ 0,

the system falls in the failure domain. The dependency
of the interval variables T, Th, and K are determined by
the inequality constraint T

Th
54K. The details of interval

variables are given in Table 4.
Non-probabilistic reliability index ~h calculated by

considering dependency and without considering
dependency under different years are given in Table 5
and Figure 4, respectively. Non-probabilistic reliability
sensitivity under the consideration of dependency is
given in Table 6.

Figure 2. Relationship between the non-probabilistic index and
interval variable b1.

Table 2. Non-probabilistic reliability sensitivity for midpoint.

Sensitivity type ~h ∂~h

∂�p1

∂~h

∂�p2

∂~h

∂�b1

∂~h

∂�b2

∂~h

∂�mcr

Proposed method 1.9576 0.1044 20.3230 20.4432 20.3132 0.1210
Without considering dependency 1.8080 20.2714 20.6786 20.6994 20.2922 0.1149

Figure 3. Harmonic drive.

Table 3. Non-probabilistic reliability sensitivity for radius.

Sensitivity type ∂~h

∂pr
1

∂~h

∂pr
2

∂~h

∂br
1

∂~h

∂br
2

∂~h

∂mr
cr

Proposed method 20.1043 20.8513 20.9528 20.5102 20.2370
Without considering dependency 20.4385 21.0959 21.1074 20.4500 20.2078

Table 1. Details of interval variables.

Interval variables p1 (kN) p2 (kN) b1(m) b2(m) mcr (kN.m)

Lower bound 4.4 1.7 1.8 4.5 32
Upper bound 5.6 2.3 2.2 5.5 40

Figure 1. A cantilever.

Table 4. Details of interval variables.

Interval variables Th(N m) Nv(r/min) K T(N m)

Lower bound 380 0.1 1.1 1800
Upper bound 420 0.12 1.3 2000
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From Table 6, we can see that the results without
considering dependency are quite different from that
with considering dependency. Input speed Nv is a key
interval variable that more attention should be paid to
in the design stage.

Conclusions

Owing to insufficient data and imprecise information,
the impact of various uncertainties in engineering prac-
tices should be considered, especially in the early design
stage of products. In this case, the traditional
probability-based reliability method cannot be used
because it needs a large amount of data to determine
probabilistic distributions of random parameters.
Fortunately, interval-based non-probabilistic reliability
methods are appropriate to deal with this case. In this
article, the existing non-probabilistic reliability index
model and non-probabilistic reliability sensitivity
method are extended, and a novel non-probabilistic
reliability sensitivity method for structural systems,
with interval variables whose dependence is determined

by constraints, is proposed. The dependency of interval
variables is determined by inequality and equality con-
straints. The results of the two examples show that the
proposed method is effective because it provides a
means of reliability sensitivity analysis under the case of
severe uncertainty. Generally, the proposed method is
more general than the traditional non-probabilistic sen-
sitivity method because it considers the dependency of
interval variables. The numerical examples indicate the
results of non-probabilistic reliability sensitivity, calcu-
lated without considering dependency, are quite differ-
ent from that calculated with considering dependency.

It is should be noted that the results calculated by
using the proposed method are not the precise solu-
tions. The main error comes from the finite difference
method. Comparing some global approaches and
improving the computational accuracy will be consid-
ered in our future works.
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