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Abstract
Fault tree analysis is a powerful and computationally efficient technique for safety analysis and reliability prediction. It
decomposes an undesired failure into multiple possible root causes by constructing a sub-event tree and spreading it into
basic events. Classical reliability theory using probability theory to quantify the uncertainties of basic events encounters
many challenges when failure data are limited. In this case, uncertainty quantification should be carried out based on sub-
jective information, such as experts’ assessment or engineers’ experience. As a generalization of probability theory,
imprecise probability theory can quantify subjective information as the upper and lower expectations or previsions. In
this article, a fault tree analysis algorithm incorporating subjective information into imprecise reliability models of basic
events is proposed to calculate the failure interval of lubricating oil warning system.
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Introduction

There are more and more stringent requirements on the
safety of large engineering systems due to the growing
technical and environmental complexity, and it has sti-
mulated the research and development of safety analy-
sis methods and safety assessment procedures.1 System
safety analysis can be conducted both qualitatively and
quantitatively.2 Fault tree analysis (FTA) is a powerful
diagnosis technique for qualitative safety analysis, and
it is widely used to determine the root causes of unde-
sired system failure event.3 Conventional FTA is based
on probability theory, which is consistent with conven-
tional reliability theory.4 The general assumption is that
all probabilities or probability distributions involved
are precise or perfectly known, and the system compo-
nents are independent or their dependence is precisely
known.5 However, in many cases, it may be difficult or
even impossible to determine the distribution para-
meters precisely due to the inherent uncertainty and
uncontrollable variability.6 Many specialists and scho-
lars have found that statistical data and distribution
information in practical reliability applications are
often limited. Therefore, it might be more appropriate
to quantify the reliability uncertainty based on subjec-
tive information, such as experts’ judgments or engi-
neers’ experiences. Moreover, it is difficult for experts

or engineers to quantify an event using a precise or
deterministic number, rather imprecise descriptors or
linguistic assessments may be more convenient for
them.7–9 In these cases, classical reliability theory can-
not provide appropriate ways to quantify this kind of
assessments. In the past few decades, many specialists
and scholars have developed new models and reliability
theories to facilitate these assessments, such as Tanaka
et al.,10 Soman and Misra11 and Huang et al.4,12 These
studies pointed out that the probability of basic events
can be treated as fuzzy numbers, and possibility mea-
sures can be used to quantify uncertainty instead of
using probability ones. These models and methodolo-
gies focus on the basics of fault trees and introduce the
fuzzy set theory and possibility theory into safety analy-
sis. Besides, a growing number of subjective methodol-
ogies are used to evaluate system reliability and safety.
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Wang et al.13 incorporate fuzzy set modeling and evi-
dential reasoning to assess the safety requirement speci-
fications; more information is available in Liu et al.1

and Wang.6

In addition to the above theories, one concept that is
called ‘‘imprecise probability,’’ also known as ‘‘interval
probability,’’ has particularly been a growing area of
research in recent years. Technically, imprecise prob-
ability is a generalization of probability theory, and its
theoretical development, as well as applications in relia-
bility engineering, has been reported in Utkin and
Coolen,5 Coolen7 and Utkin.14 Compared with classical
reliability theory, imprecise reliability theory does not
assume precise probabilities or probability distributions
of reliability measures, and also there is no need to
assume precisely known dependence relationship
between basic events. It characterizes the uncertainty in
terms of the upper and lower expectations, which is an
appropriate alternative to uncertainty and imprecision
quantification. In many engineering practices, assess-
ments and judgments often come from different experts
and engineers. In that case, imprecise probability theory
can provide a unified tool to fuse these heterogeneous
assessments into one model via natural extension.8

Natural extension is an effective method to quantify
uncertainties, but sometimes it is intractable because of
large dimensionality, which restricts its wide applica-
tions. To promote the application, some simplified
algorithms of a natural extension must be developed.7

By FTA, system safety analysis can be resolved to qua-
litative and quantitative analyses of its minimum cut
sets and path sets, which are subsets of its all compo-
nents; it reduced the complexity of the system to some
extent, as well as the complexity of a natural extension.

Study on imprecise reliability theory made some sig-
nificant progresses on the theoretical aspect, but there
are few applications in real-world projects. Lubricating
oil warning system15 is a critical component in aircraft
engine. Owing to the complicated working environ-
ment, there are many uncertain factors influencing its
safety, which are very difficult to be quantified by clas-
sical probability theory. Therefore, imprecise reliability
models and FTA method are adopted in this article to
estimate the failure probability of the lubricating oil
warning system.

The remainder of this article is organized as follows:
Section ‘‘Key concepts of imprecise probability theory’’
reviews several key concepts of imprecise probability
theory. The new FTA method based on imprecise prob-
ability is proposed in section ‘‘Imprecise reliability
model–based FTA.’’ In section ‘‘FTA for lubricating oil
warning system,’’ the new method is applied to lubricat-
ing oil warning system to show the effectiveness of the
new method; discussion and a brief comparison with
Bayesian inference model and interval analysis method
are made at the end of this section. The conclusion and
future studies are summarized in section ‘‘Conclusion
and remarks.’’

Key concepts of imprecise probability
theory

Basic definitions of imprecise probability theory

The models and methodologies of imprecise probability
theory are based on the behavioral interpretation. The
basic idea relating to the behavioral interpretation is
the concept of a gamble, while the probabilistic models
of imprecise probability theory are the lower and upper
previsions of these gambles. Three fundamental princi-
ples are constructed on the basis of subjective rational-
ity. The basic definitions are given here, and more
detailed information is available in Walley.8

Definition 1. A gamble X is a bounded real-valued func-
tion defined on possibility space O; it can be regarded
as an uncertain reward whose value depends on the
uncertain state vi 2 O, i=1, . . . , n. If you accept
gamble X, then some time later the true state vi will be
revealed, and you will receive the reward X(vi) in units
of utility.8,16

Definition 2. A lower prevision P(X) is a bounded real-
valued function defined on a gamble X; it can be
treated as a supremum buying price for a person to buy
gamble X. While an upper prevision is a bounded real-
valued function defined on a gamble X, which can be
regarded as an infimum selling price for a person to sell
gamble X. It should be noted that the lower and upper
previsions should be correlative for they are determined
under same amount of information.

Definition 3. Avoiding sure loss means that any predict-
able sure loss is unacceptable. Consider a gamble X,
P(X) is the supremum buying price for you to buy gam-
ble X; obviously, G(X)=X� P(X) is the profit via buy-
ing gamble X. If you have to make decisions on various
gambles, in order to make the profit and avoid sure

loss, sup
v2O

Pn
i=1 G(Xi(v))50, which means there is at

least one outcome, which gives the net gain of any n
gambles.16

Definition 4. We define coherence indirectly from the
definition of incoherence. Suppose there are several
gambles, X1, . . . ,Xn, and X0 is a certain linear combi-
nation of these gambles. According to Walley,8 inco-
herence means that the specified buying prices
P(Xi), i=1, . . . , n, effectively implying a buying price
for the gamble X0, are higher than its specified price
P(X0). According to the principle of coherence, the lower
probability P(X) is coherent, if and only if when for any

n51, m50, sup
v2O
½
Pn

i=1 G(Xi(v))�mG(X0)�50.

Besides, natural extension can be regarded as a
mathematical model to deduce new assessments upon
relatively known information. It has several forms and
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each of them has pros and cons in the context of spe-
cific applications. The use of proper form can substan-
tially facilitate the inference and computation of the
previsions. Please refer to Utkin and Kozine17 for more
detailed information.

Redefinitions of imprecise probability theory
in reliability theory

A particular case of gambles is considered for which the
reward can be either 0 or 1, in units of utility.15 The 0–1
valued gamble identified with an event X can be written
as follows

X(v)=
1, ifv 2 X
0, otherwise

�
ð1Þ

A lower prevision M(X) can be interpreted as the
maximum price you are willing to pay for buying the
0–1 valued gamble X, while the upper prevision M(X)
can be interpreted as the minimum price you are willing
to sell the gamble. The upper prevision can be written
as M(X)=1�M(Xc) since X,Xc are complementary,
and the lower and upper previsions are quantified
under same amount of information. D=M(X)�M(X)
is called the imprecision for event X. When
M(X)=M(X) for all events X, imprecise probability
degenerates into precise probability, so precise prob-
ability is one of the special cases of imprecise probabil-
ity. A relative straightforward interpretation of an
interval ½M(X),M(X)� is all possible values for precise
probability M(X), which has not been able to exclude.
Also, there is a subjective interpretation of imprecise
probability underlying Bayesian statistics where M(X)
is the ‘‘fair price’’ for a bet on an event X, loosely
speaking such that you consider that the £M(X) is the
fair price for a bet that pays £1 if event X occurs and
nothing otherwise.7,8 Formally, this reward is given in
units of utility instead of pounds to avoid the influence
of personal attitude toward risk. Generalizing this to
imprecise probability theory, M(X) is the maximum
price for one to buy the bet, while M(X) is the mini-
mum price for one to sell the bet. In imprecise reliabil-
ity theory, M(X) can represent a certain reliability
measure, while ½M(X),M(X)� is the range of this relia-
bility measure defined by one’s own knowledge.

Application of natural extension in reliability theory

Consider a system consisting of n components, assume
xi is the time-to-failure (TTF) or other reliability mea-
sures of the i component, and there are mi assessments
or judgments related to the i component. Suppose
that all assessments can be described with the form of
mathematical expectations M(uij(xi)), j=1, 2, . . . ,mi,
where uij(xi) is a function of the basic gamble xi corre-
sponding to the j assessment for this component.
According to Barlow and Proschan,18 the system

lifetime can be uniquely determined by component life-
times. Let X=(x1, x2, . . . , xn), then there is a function
g(X) of the components’ lifetimes, which can character-
ize the system reliability behavior. Here, functions g(X)
and uij(xi) can also be regarded as gambles.

Suppose that partial information about components
is represented as the form of the lower and upper
expectations aij =M(uij(xi)) and aij=M(uij(xi)),
respectively. Actually, many reliability measures can be
expressed in the form of mathematical expectations as
follows

R(t)=P(X. t)=ð
Rþ

I t,+‘½ �(X)r(X)dX=E I½t,+‘�(X)
� �

ð2Þ

F(t)=P(X4t)=

ð
Rþ

I 0, t½ �(X)r(X)dX=E I½0, t�(X)
� �

ð3Þ

MTTF=

ð
Rþ

Xr(X)dX=E(X) ð4Þ

Residual TTF=E I½z, +‘�(X� t) I½t,+‘�(X)
��� �

ð5Þ
Residual MTTF=E X� t I½t,+‘�(X)

��� �
ð6Þ

In order to compute other reliability measures, natu-
ral extension is adopted to construct reliability models.
In this case, the natural extension in primal form can be
rewritten as17

M(g) M(g)
� �

= min
P

(max
P

)

ð
Rn
þ

g(X)r(X)dX ð7Þ

subject to

r(X)50,

ð
Rn
þ

r(X)dX=1

aij4
ð
Rn
þ

uij(xi)r(X)dX4aij, i4n, j4mi

ð8Þ

where the set P is all possible n-dimensional density
functions fr(X)g satisfying constraint conditions.
Imprecise probability assumes that only partial infor-
mation about the reliability of the system and its com-
ponents is available; obviously; the partial information
can be thought as evidence reducing the range of set P.
If we have no information about the components’
behavior, the set P is very large, and it will shrink as
the information increases. If the components are inde-
pendent, r(X) can be written as

r(X)= r(x1)3 r(x2)3 � � � 3 r(xn) ð9Þ

This primal form can be used in some cases; how-
ever, it has infinitely many variables, and it can hardly
be solved directly. Kuznetsov applied the duality
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theorem of linear programming19 in equations (7) and
(8) and generated a new form, that is, Kuznetsov’s
form,17,20 which has finite variables and is easy to com-
pute. To make it easier to follow, we introduce the dua-
lity theorem first.

The duality theorem in linear programming19 can be
written as

min z=CTX
AX5b
X50

8<
: )

from the primal problem to thedual one

max w=bTY
ATY4C
Y50

8<
: ð10Þ

It should be noted that the duality theorem can be
applied only for the discrete cases.17,20 Therefore, we
first transfer the primal form into discrete one. X is
divided into N parts, which is shown in Figure 1; as N
goes to infinity, the following equation can be estab-
lished approximately

ðb
a

r(X)dX=
XN
K=1

r(X(K))DXK ð11Þ

ðb
a

g(X)r(X)dX=
XN
K=1

g(X(K))r(X(K))DXK ð12Þ

Equations (7) and (8) can be translated as17

M(g) M(g)
� �

= inf
P

sup
P

� � XN
K=1

g(X(K))r(X(K))DXK

ð13Þ

subject to

r(X(K))50,
XN
K=1

r(X(K))DXK =1

aij4
XN
K=1

uij(xi
ki)r(X(K))DXK4aij, i4n, j4mi

ð14Þ

According to the duality theorem, equations (13) and
(14) can be rewritten as17

M(g)= sup
c, cij, dij

c+
Xn
i=1

Xmi

j=1

(cijaij � dijaij)

( )
ð15Þ

subject to

c+
Xn
i=1

Xmi

j=1

(cij � dij)uij(xi)4g(X) ð16Þ

and

M(g)= inf
c, cij, dij

c+
Xn
i=1

Xmi

j=1

(cijaij � dijaij)

( )
ð17Þ

subject to

c+
Xn
i=1

Xmi

j=1

(cij � dij)uij(xi)4g(X) ð18Þ

where c, cij and dij are optimization variables; c
corresponds to the constraint

PN
K=1 r(X(K))DXK =1,

cij corresponds to the constraint
PN

K=1 uij(xi
ki)

r(X(K))DXK4aij and dij corresponds to the constraintPN
K=1 uij(xi

ki)r(X(K))DXK5aij.

Imprecise reliability model–based FTA

Basic assumptions

The following assumptions are given for imprecise relia-
bility model–based FTA:

1. The states of events are crisp: occurrence or nonoc-
currence. However, the event state is uncertain at a
given future instant.4

2. Assessments coming from experts or engineers are
expressed in the form of the upper and lower
expectations.

General imprecise reliability models for top event

Consider a minimum cut consisting of n basic events,
suppose xi is the state of the ith basic event, and there
are mi assessments related to the ith basic event.
Assessments for basic events are represented as
aij=M(uij(xi)) and aij =M(uij(xi)), where uij(xi) is a
function of state variable xi corresponding to the j
judgment or assessment for this basic event and
j=1, 2, . . . ,mi. Imprecise reliability model of the ith
basic event can be expressed as a set of mi available
upper and lower expectations

Mi = Eij, Eij, fij(Xi), j=1, 2, . . . ,mi

� 	
ð19Þ

Our aim is to analyze the reliability and safety of the
top event, suppose F(X) characterizes the state of the
top event, which can be uniquely determined by all

Figure 1. Discretization of continuous interval.
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basic events. Let X=(x1, x2, . . . , xn), imprecise relia-
bility model for the top event can be conducted as

M= E,E, h g(X)ð Þ
� 	

= ^ni=1 Mi = ^ni=1 ( ^
mi

j=1 Mij)

ð20Þ

Here, the symbol ^ni=1 means that all models Mi are
simultaneously used to obtain M.

In order to compute the aforementioned model, the
natural extension in theory of imprecise probability is
adopted, which can be regarded as a transformation of
the component imprecise models to the system model,
that is

M(g) M(g)
� �

= min
P

(max
P

)

ð
Rn
þ

h g(X)ð Þr(X)dX ð21Þ

subject to

r(X)50,

ð
Rn
þ

r(X)dX=1 ð22Þ

aij4
ð
Rn
þ

uij(xi)r(X)dX4aij, i4n, j4mi

As mentioned earlier, the primal form of a natural
extension is appropriate for some cases, especially
when there are few components and relative assess-
ments, as well as indeterminate independent relation-
ship. However, if the number of judgments,

Pn
i=1 mi,

and the number of basic events, n, are large, imprecise
reliability model has infinite variables, and it can hardly
be solved.5 Therefore, simplified algorithms for approx-
imate solutions to such optimization problems must be
developed. There are many ways to simplify imprecise
reliability model, that is, integrate homogeneous assess-
ments to reduce the dimensionality of

Pn
i=1 mi, and

decompose the whole system into several subsystems to
reduce the number of n and so on. Using fault tree, sys-
tem safety analysis can be resolved to qualitative and
quantitative analyses of its minimum cut sets and path
sets, and thus, it reduced the complexity of the impre-
cise reliability model to some extent.

Imprecise reliability model on basic of Boolean
function

Suppose the basic event has two states, fails and func-
tioning, and xi is the state variable of the basic event.
The state for xi can be expressed as

xi =
1, if the component i fails
0, if the component i is functioning

�
ð23Þ

The state of the top event can be quantified via the
basic events’ states, that is

F=F(X),X= x1,x2, . . . ,xn ð24Þ

where F(X) is system structure function characterizing
the state of the system, which is a Boolean function.15

System structure function F(X) and failure probability
Fs(t) of ‘‘and gate’’ can be expressed as

F(X)= \
n

i=1
xi

F(X)=
Yn
i=1

xi, xi 2 ½0, 1�
ð25Þ

Fs(t)=E F(X)ð Þ=E
Yn
i=1

xi

 !
ð26Þ

System structure function F(X) and failure probabil-
ity Fs(t) of ‘‘or gate’’ can be expressed as

F(X)= [
n

i=1
xi

F(X)=1�
Yn
i=1

(1� xi), si 2 ½0, 1�
ð27Þ

Fs(t)=E F(X)ð Þ=E 1�
Yn
i=1

(1� xi)

 !
ð28Þ

Consider a minimum cut with n basic events, we will
use the following designations:

mi the number of assessments of the ith basic event,
i=1, 2, . . . , n.
mij the jth assessment of the ith basic event,
j=1, 2, . . . ,mi.
uij(xi) a function of the ith basic event corresponding to
the jth assessment.

Suppose partial information of a basic event can be
expressed in the form of the upper and lower expecta-
tions. That is, aij4E(uij(xi))4aij, the imprecise reliabil-
ity model for the ith basic event can be expressed as

Mi = aij, aij,uij(xi), j=1, 2, . . . ,mi

D E
ð29Þ

Imprecise reliability model for the kth minimum cut
can be given by

M= P,P,F(X)
� 	

= ^pi=1 M(Ci)

= ^mi

j=1 aij, aij,uij(xi), j=1, 2, . . . ,mi

D E
ð30Þ

Suppose there are p minimum cut sets of the top
event, C1,C2, . . . ,Ck, . . . ,Cp, the failure probability of
the top event can be calculated using imprecise reliabil-
ity model. The imprecise reliability model of the top
event under the case of the minimum cuts has non-
empty intersections and can be expressed as

M=
Xp
k=1

Pk,
Xp
k=1

Pk

* +
ð31Þ
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The imprecise reliability model of the top event
under the case of the minimum cuts has intersections
and can be shown as

M= P1 +
Xp
k=2

(1� P1) � � � (1� Pk�1)Pk,P1

*

+
Xp
k=2

(1� P1) � � � (1� Pk�1)Pk

+
ð32Þ

FTA for lubricating oil warning system

Lubricating oil system transports sufficient clean lubri-
cating oil to every rotatable part of the engine when they
are in a continuous working state, minimizes friction
and wear between machine joint surfaces and also takes

away fricative heat and sundries. Shortage of oil supply
will damage engine and affect the safety of the aircraft.
Therefore, lubricating oil pressure warning system is
very important for ensuring the safety of aircrafts.
Lubricating oil warning system consists of pressure indi-
cating system and pressure alarm system. Pressure indi-
cating system monitors oil pressure with a pressure
sensor that can translate pressure into electrical signals
accepted by pressure gage where the driver can read and
pressure alarm system can signal an alarm to the driver
when the pressure is below the index value.15

Schematic diagrams of pressure indicating system
and pressure alarm system are shown in Figures 2
and 3, respectively.

In our preliminary study, there are two cases that
will make serious damage to the engine. One is that the
inlet pressure exceeds the specialized range; meanwhile,

Figure 2. Schematic diagram of pressure indicator system.

Figure 3. Schematic diagram of pressure alarm system.
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pressure indicator system does not give any indicator
and pressure alarm system does not give an alarm. The
other is that lubricating oil filter is blocked.15 In this
article, these two cases will be taken as the top events,
and FTA, as well as quantitative analysis, will be given
based on the imprecise reliability models.

The fault trees for oil pressure system, oil alarm sys-
tem and the whole lubricating warning system are given
in Figures 4–6, respectively.

It should be noted that the working environment of
the aircraft is very complicated, and the performance of
an aircraft is affected by many kinds of uncertainties.
In engineering practices, sufficient data to quantify
uncertainties by probability theory are not easy to sat-
isfy, so the reasonable quantification of these uncer-
tain aspects should be performed based on subjective
information. The components’ failure probabilities of
lubricating warning system before 500 flight hours are
obtained by consulting two experts in this article.
They can provide an interval or a rough range accord-
ing to their knowledge about these components rather
than the precise value. Partial information of lubricat-
ing oil warning system from the two experts is shown
in Table 1.

As can be seen in Table 1, some judgments from the
two experts are consistent, and some are conflicting.
These judgments should be fused in order to minimize,
if not completely eliminate, the conflict. Conjunction
rule and unanimity rule proposed by Kozine and
Filimonov16 are adopted for handling these conflicts;
the fusion results are shown in the last column of
Table 1.

FTA of engine’s damage caused by blocked oil filter

When the oil filter is blocked and alarm system gives
no warning, unfiltered oil will flow to bearings, which
will block the nozzles. Take this case as the top event;
fault tree of this example is given in Figure 4; in order
to reduce the computational burden, Fussell–Vesely

Figure 5. FTA of lubricating oil pressure indicating system and
alarming system caused by low oil pressure.

Figure 4. FTA of lubricating oil pressure indicating system and alarming system caused by blocked filter.
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theory15,19 is adopted to calculate the minimum cuts,
and the results are shown in Table 2.

According to Table 2, minimum cut sets of this sys-
tem are

f2, 1g, f3, 1g, f4, 1g, f5, 1g, f6, 1g

Considering xi is the state variable of the basic event,
imprecise reliability model for every cut is constructed as

MC1�1 = ^ (M1,M2), M1 = 0:983 10�3, 1:113 10�3, x1
� 	

,

M2 = 1:493 10�3, 1:513 10�3, x2
� 	

MC1�2 = ^ (M1,M3), M1 = 0:983 10�3, 1:113 10�3, x1
� 	

,

M3 = 0:83 10�3, 0:83 10�3, x3
� 	

MC1�3 = ^ (M1,M4), M1 = 0:983 10�3, 1:113 10�3, x1
� 	

,

M4 = 1:03 10�3, 1:03 10�3, x4
� 	

MC1�4 = ^ (M1,M5), M1 = 0:983 10�3, 1:113 10�3, x1
� 	

,

M5 = 0:53 10�3, 0:53 10�3, x5
� 	

MC1�5 = ^ (M1,M6),M1 = 0:983 10�3, 1:113 10�3, x1
� 	

,

M6 = 1:23 10�3, 1:213 10�3, x6
� 	

ð33Þ

Table 1. Failure probabilities of lubricating oil warning system components before 500 flight hours.

Expert 1 Expert 2 Fusion results

Lubricating oil filter [0.98 3 1023, 1.02 3 1023] [0.98 3 1023, 1.01 3 1023] [0.98 3 1023, 1.01 3 1023]
Power I [1.5 3 1023, 1.51 3 1023] [1.5 3 1023, 1.51 3 1023]
Power II [1.48 3 1023, 1.49 3 1023] [1.5 3 1023, 1.51 3 1023] [1.48 3 1023, 1.51 3 1023]
Cable assemblies I 0.8 3 1023 0.8 3 1023

Cable assemblies II 0.8 3 1023 0.8 3 1023

Conduit assemblies 1 3 1023 1 3 1023

Warning lamp 0.5 3 1023 0.5 3 1023 0.5 3 1023

Differential pressure switch [1.2 3 1023, 1.21 3 1023] [1.13 3 1023, 1.25 3 1023] [1.2 3 1023, 1.21 3 1023]
Pressure of lubricating oil [0.99 3 1023, 1.01 3 1023] [1.0 3 1023, 1.02 3 1023] [1.0 3 1023, 1.01 3 1023]
Low-pressure switch [0.99 3 1023, 1.02 3 1023] [0.89 3 1023, 1.12 3 1023] [0.99 3 1023, 1.02 3 1023]
Pressure gage [1.19 3 1023, 1.22 3 1023] [1.2 3 1023, 1.23 3 1023] [1.2 3 1023, 1.22 3 1023]
Sensor [1.2 3 1023, 1.25 3 1023] [1.26 3 1023, 1.3 3 1023] [1.2 3 1023, 1.3 3 1023]

Table 2. Minimum cuts of blocked filter by Fussell–Vesely.

Steps 1 2 3

M1, 7 2, 1 2, 1
M2, 1 3, 1

4, 1
5, 1
6, 1

Figure 6. FTA of lubricating oil warning system.
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The failure probability of case 1 is given by

P(1),P(1)

 �

= P1 +
X5
k=2

(1� P1) � � � (1� Pk�1)Pk,

"

P1 +
X5
k=2

(1� P1) � � � (1� Pk�1)Pk

#
= ½0, 4:523 10�3�

ð34Þ

FTA of engine’s damage caused by low inlet pressure

When both lubricating oil pressure system and oil
alarm system failed, and oil pressure is lower than the
minimum allowable oil pressure, the engine will fail.
Failure tree of this case is given in Figure 5; for case 2,
Fussell–Vesely theory is used to determine the mini-
mum cuts, and the analysis results are shown in
Table 3; according to Table 3, the minimum cut sets
of the system are

f2, 8, 7g, f2, 10, 7g, f2, 11, 7g, f2, 12, 7g, f9, 8, 7g, f9, 10, 7g,
f9, 11, 7g, f9, 12, 7g, f3, 8, 7g, f3, 10, 7g, f3, 11, 7g, f3, 12, 7g,
f5, 8, 7g, f5, 10, 7g, f5, 11, 7g, f5, 12, 7g

For case 2, according to equation (6), we have

MC2�1 = ^ (M2,M7,M8), MC2�2 = ^ (M2,M7,M10),

MC2�3 = ^ (M2,M7,M11), MC2�4 = ^ (M2,M7,M12),

MC2�5 = ^ (M9,M7,M8), MC2�6 = ^ (M9,M7,M10),

MC2�7 = ^ (M9,M7,M11), MC2�8 = ^ (M9,M7,M12),

MC2�9 = ^ (M8,M7,M5), MC2�10 = ^ (M10,M7,M5),

MC2�11 = ^ (M11,M7,M5), MC2�12 = ^ (M12,M7,M5),

MC2�13 = ^ (M3,M7,M8), MC2�14 = ^ (M3,M7,M10),

MC2�15 = ^ (M3,M7,M11), MC2�16 = ^ (M3,M7,M12)

ð35Þ

The failure probability of case 2 can be calculated as

P(2),P(2)

 �

= P1 +
X16
k=2

(1� P1) � � � (1� Pk�1)Pk,

"

P1 +
X16
k=2

(1� P1) � � � (1� Pk�1)Pk

#
= ½0, 1:9493 10�2�

ð36Þ

Safety analysis of the whole system

The fault tree of the whole system is shown in Figure 6,
and the minimum cuts of the system are the union of
the above two cut sets. The failure probability of the
complete system can then be calculated as

P(S),P(S)

 �

= P(1)+P(2),P(1)+P(2)

 �

= ½0, 2:4013 10�2�
ð37Þ

Discussion

Although lifetime data used in the above example are a
very particular case and they only consider the lower
and upper failure probabilities of every basic event,
imprecise reliability model allows for a wide variety of
possible reliability knowledge representations.
Therefore, some of the basic events can be represented
by precise reliabilities, and some of them by imprecise
reliabilities.16 The new method’s striking characteristic
is that it can combine this heterogeneous knowledge
into one model without any assumption or very little
assumption.

Besides, Bayesian inference model, interval analysis
and other non-probabilistic reliability theories21 can
also be used for system safety analysis when lifetime
data are lacking. The basic of Bayesian inference model
is Bayes’ formula22

p(p xj )= f(x pj )p(p)Ð
Y
f(x pj )p(p)dp

ð38Þ

Here, p(p) is a precise probability distribution, which is
decided by prior knowledge, that is, experts’ experi-
ence is then translated into a single probability distri-
bution. Note that there may be many probability
distributions, which are equally well supported by the
prior knowledge; moreover, if experts have little infor-
mation about the system, p(p) is also very difficult to
decide. Interval analysis method assumes that para-
meters related to the structure are independent inter-
val variables,23 which is xi 2 ½xi, xi� and x1, . . . , xn are
independent, and computes other reliability measures
using interval arithmetic. Actually, as pointed above,
it is unreliable to assume that variables are indepen-
dent unless there is powerful and sufficient evidence
to support it. The proposed method in this article does
not assume precise probability distributions and the
known independent relationship. Therefore, it can be

Table 3. Minimum cuts of low oil pressure by Fussell–Vesely.

Steps 1 2 3 4 5

M3, M4, 7 2, M4, 7 2, 8, 7 2, 8, 7 2, 8, 7
M5, M4, 7 2, 10, 7 2, 10, 7 2, 10, 7

2, 11, 7 2, 11, 7 2, 11, 7
2, 12, 7 2, 12, 7 2, 12, 7
M5, M4, 7 9, M4, 7 9, 8, 7

3, M4, 7 9, 10, 7
5, M4, 7 9, 11, 7

9, 12, 7
3, 8, 7
3, 10, 7
3, 11, 7
3, 12, 7
5, 8, 7
5, 10, 7
5, 11, 7
5, 12, 7
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regarded as an alternative to safety analysis when life-
time data are scarce.

It should be noted that the proposed method has
some limitations. If the number of judgments

Pn
i=1 mi

and basic events n are large, natural extension cannot
be practically solved due to their extremely large dimen-
sionality, which restricts the application of imprecise
calculations to reliability analysis.5 Besides, since some
reliability measures cannot be simply described as
forms of expectations and previsions, these models can-
not be handled by imprecise probability theory easily.
Furthermore, natural extension cannot conveniently
express independent relationships.

Conclusion and remarks

The purpose of this study is to introduce a new method
to evaluate the failure possibility of complex engineer-
ing systems, in which lifetime data are scarce, or the
failure probability is extremely small. A new model
combining the imprecise reliability theory with FTA is
built, and its effectiveness is illustrated in the example
of lubricating oil warning system.

The constructed model in the article quantifies
uncertainties of basic events via the lower and upper
expectations rather than precise probabilities, and it is
more convenient for an expert especially when partial
information is available.24 And the imprecision D can
reflect the amount of experts’ information about a
basic event where classical reliability theory fails.
Furthermore, by comparing several assessments com-
ing from different experts, we can know whether there
are conflicts between different experts so that we can
adopt some skills to eliminate conflict.25,26 Using the
fault tree, system safety analysis can be resolved to qua-
litative and quantitative analyses by its minimum cut
sets and path sets. Thus, the new model combining
imprecise probability theory with FTA can reduce the
complexity of system safety analysis as well as impre-
cise reliability model to some extent.

Note that natural extension with extremely large
dimensionality is difficult to be practically solved, and
some reliability measures, as well as independent rela-
tionships, cannot be simply represented by imprecise
probability theory, so future research will focus on sim-
plified algorithms for approximate solutions to impre-
cise reliability models, together with analytical
solutions for some specific types of systems and initial
information.
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