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Abstract
This article presents a prognostic approach to estimate remaining useful life for systems subjected to dependent compet-
ing failure processes. In the literature, shock damage is the damage to a soft failure process caused by a shock process.
However, how the degradation process causes damage to a hard failure process has not been well studied. In this article,
the degradation damage is modeled as the damage to a hard failure process from a degradation process. Degradation
and shock processes, as ‘‘elemental processes,’’ result in failures via either a soft failure or a hard failure process, namely,
‘‘compound processes.’’ Instead of leading to a direct failure, elemental processes construct compound processes: the
soft failure process consists of a degradation process and shock damage, and the hard failure process consists of a shock
process and degradation damage. In this way, the damage in this article especially represents the effect of an elemental
process on other compound processes. Furthermore, a particle filter is applied based on the established model for sys-
tem statement estimation and on-line prediction of remaining useful life distribution with and without measurement
noise in prognostics. Finally, a numerical example is presented with sensitivity analysis.

Keywords
Remaining useful life, particle filter, dependent and competing processes, degradation damage, shock damage

Date received: 16 April 2014; accepted: 4 December 2014

Introduction

The dependency and competitiveness of multiple failure
mechanisms increase the difficulty of remaining useful
life (RUL) prognostics for complex systems, which suf-
fer from operation and external damage sources,
including degradation, shock loads, and so on.1 In the
literature, failure processes are classified into two basic
failure models:2 (1) hard failures by sudden shock pro-
cesses from incidental external discrete occasions and
(2) soft failures by degradation processes from physical
deterioration and aging. The fusion of both processes
improves the condition monitoring information for
maintenance decision making.3–7 In this article, degra-
dation and shock process, as ‘‘elemental processes,’’
result in failures via either a soft failure process or a
hard failure process, as ‘‘compound processes.’’ They
indicate failure occurrences by crossing the soft failure
threshold or the hard failure threshold. The shock dam-
age is well studied8–10 and involves a soft failure pro-
cess being impacted by a shock process. However,
there are a limited number of studies about degradation
damage that impacts hard failure processes. For exam-
ple, the causes of bearing failures include normal

fatigue as a degradation process and shock loads as a
shock process. A soft failure is referred to as spalling in
balls, inner rings, or outer rings. It is the result of both
normal fatigue and shock damage from excessive loads.
The degradation damage to a hard failure process by
the increase in vibration and shock is due to small dis-
crete particles from surfaces caused by spalling from
normal fatigue. Therefore, a hard failure is the result of
both the shock process and degradation damage from
normal fatigue. It is obvious that fatigue and shock as
causes are independent, whereas soft failures and hard
failures as results or failure modes are dependent and
competing. An example we present explains why the
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hard failure process is influenced by the degradation
level.

The main objectives of this study are as follows.
First, we seek to illustrate the procedures of dependent
competing processes and their corresponding role in the
framework of prognostics and health management
(PHM). Second, we seek to establish a model with shock
damage, and especially with the two models of degrada-
tion damage, considering the degradation process and
the shock process as elemental processes and consider-
ing the soft failure process and the hard failure process
as compound processes. Third, we seek to apply the
established model for RUL estimation by a particle filter
with and without measurement noise in prediction.
Finally, we provide an example with practical and simu-
lated data to demonstrate the proposed method.

The data source is one of the major distinctions
between traditional life prediction and RUL estimation
in the PHM framework. The life data from destructive
experiments may be costly. The PHM methodology
obtains degradation data from the monitoring sensors
with uncertain measurement.11 At the same time, the
degradation data offer information about the potential
physical processes12 and identify critical components13

and multiple performance characteristics of the sys-
tems.14 The training signals for the off-line process and
real-time signals for the on-line process are synthesized
to predict RUL distribution.15 On-line information with
noisy signals is integrated to supply meaningful numeri-
cal results for prediction with error control.16 Off-line
data and on-line data are connected in order to update
the measured underlying damage process states, which
provide early warning to avoid expensive breakdowns.17

The newly observed degradation data update RUL
distribution prediction by Bayesian updating and the
expectation–maximization algorithm in PHM.18

Recently, the on-line prediction of RUL with various
kinds of failure modes19 and prognostic models20 has
been emphasized in industry for the purposes of moni-
toring real-time reliability and ensuring system avail-
ability. Prognostics methods usually are classified into
three approaches:21 (1) physics-of-failure (PoF)
approaches, (2) data-driven approaches,22 and (3)
hybrid approaches. PoF approaches apply information
of in situ life-cycle loads and devices for failure precur-
sors to estimate the RUL for devices and prevent fail-
ure.23 For example, as one of the devices for failure
precursors, canary devices usually have the same criti-
cal failure modes of target devices, but have more easily
accessible features to alert failures in advance. Model-
based approaches amplify the imprecision of prognos-
tics in uncertainty analysis.24 Data-driven approaches25

contain the directly observed state processes, such as
regression-based models,26 Brownian motion with drift
(Wiener processes),27 Gamma processes,28 Markovian-
based models,29 and indirectly observed state processes,
including stochastic filtering-based models, especially
the Kalman filtering approach30 and the particle filter
approach.31 Multiple member algorithms are integrated

with a weighted-sum formulation to lower the predic-
tion error based on state estimation.32 Furthermore,
some data-based models, such as adaptive neuro-fuzzy
inference systems33,34 and interval analysis
approaches,35 are integrated with a particle filter to
forecast the fault indicator and RUL prediction in a
nonlinear system36 with measurement error.37

Derived from sequential importance sampling and
Bayesian theory, an on-line particle filter–based frame-
work performs fault diagnosis and failure prognosis in
real time by a swarm of particles for points and weights
for probability mass.38 Using state probability distribu-
tion function (PDF) enables the uncertainty propaga-
tion management of estimation and prediction by
recursively inferred particles and weights.39 A state
dynamic model and a measurement model construct the
particle filter state estimation and prognostics of the
RUL of nonlinear components and non-Gaussian pro-
cesses with high accuracy,40 converged in most cases as
reported by Crisan and Doucet.41 The resampling algo-
rithm solves the effects of the degeneracy problem in the
particle filter.42,43 Tutorials on the particle filter provide
MATLAB codes for these methods.44,45 In an estima-
tion process, it performs well for the fault diagnosis of
operational mode change in a complex dynamic system
within a log-likelihood ratio approach.46 In the particle
filter framework for prognostics, one typical application
is battery RUL prediction.47,48 Furthermore, the parti-
cle filter can also be used in insulated gate bipolar tran-
sistors (IGBTs) with the system model obtained from a
least square regression.49 Details of the particle filter
can be found in Orchard.38 In this article, we employ a
particle filter to estimate the system states and future
behavior of elemental processes and compound pro-
cesses in model-based prognostics.

This article is organized as follows. In section ‘‘PHM
framework for dependent and competing processes,’’ a
framework of PHM for dependent competing failure
offers a general understanding of the proposed model.
In section ‘‘Dependent competing failure system,’’ the
system model is established for a system with compound
processes, which consist of elemental processes with the
shock damage model and the proposed degradation
damage model. In section ‘‘Prognostics method,’’ a gen-
eric particle filter is applied for on-line diagnosis and
prognosis of RUL distribution with and without the
measurement noise in prediction. Section ‘‘Numerical
example’’ presents an example to demonstrate the pro-
posed methods. Section ‘‘Conclusion and future direc-
tions’’ presents the conclusions and future directions.

PHM framework for dependent and
competing processes

Figure 1 describes the generic framework of PHM. In
order to optimize the health management policy, it pre-
dicts the RUL by estimation of current state and pre-
diction of future state.50 The framework is divided into
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Figure 1. Prognostics framework for dependent and competing processes.
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three parts: an off-line process, an on-line process, and
a process modeling. In the off-line process, the histori-
cal data for feature extraction and failure analysis for
model selection are combined to identify the para-
meters for model representation. In the on-line process,
estimated state in real time serves as a bridge between
the model in history and RUL in future. It is conceiva-
ble that an accurate estimation of RUL improves the
asset’s health level with corresponding management
approaches.

In the process modeling part of Figure 1, the system
experiences dependent competing processes. The degra-
dation process and the shock process are elemental pro-
cesses. The soft failure process and the hard failure
process are compound processes. Compound processes
are made of elemental processes. A soft failure process
consists of the degradation process and the shock dam-
age. A hard failure process consists of the shock pro-
cess and the degradation damage. Elemental processes
explain the root causes of failures and are independent.
Compound processes explain the failures modes and
are dependent on one or more elemental processes, or
the other compound processes. The advantages of ele-
mental process and compound process framework lie
in three parts. First, elemental processes and compound
processes are mutually separated. There are usually
root causes and the direct reason for a failure, which
are separated now. Elemental processes are for root
reasons and compound processes are for direct reasons.
Second, the damage is the effect of an elemental pro-
cess on other compound processes, which stands for
the dependency between them and could be measured.
In this way, it explains a situation that if a system is
susceptible to hard failure, we not only need to take
measures against the shock process but also need to

reduce degradation damage to the hard failure process.
Third, in the applications, it could be applied in situa-
tions when there are more than one degradation pro-
cesses or more than one shock processes.

Dependent competing failure system

The system in this article is subjected to a soft failure
process and a hard failure process. The soft failure pro-
cess comprises a degradation process and shock dam-
age. The hard failure process comprises a shock process
and degradation damage. The degradation process and
the shock process are assumed mutually independent,
and both of them represent the failure causes. Soft fail-
ure and hard failure are failure modes, both of which
are competing for system malfunction. We set the mini-
mal time interval or the time period Dt=1.

Soft failure process

Degradation process. A degradation process, with vari-
ous degradation paths, is due to corrosion, wear, crack
growth, and other aging or usage-based degradation.51

For illustration, a linear degradation path is applied,
X(t)=u+b � t, where in this article the initial value u
is constant 0 and the degradation rate
b ;Normal(mb,sb). In particular, the initial value in
the particle filter is X(1�Dt) instead of X(0), where the
initial values are required to be random. Then

X(t)=X(t� 1)+b � Dt ð1Þ

Shock damage. Shock damage accelerates the soft fail-
ure process based on a shock process. The shock time
follows a Poisson process fN(t), t50g, with rate l. At
the ith shock, the shock damage size yi is s-dependent
on the Poisson process. At time t, when there is a shock
N(t)�N(t� Dt)=1, shock damage equals the summa-
tion of past shock damage Y(t� Dt) and the shock
damage yN(t) at time t. Then, the shock damage could
be written as

Y(t)=
Y(t� Dt)+ yN(t), ifN(t)�N(t� Dt)=1
Y(t� Dt), ifN(t)�N(t� Dt)=0

�
ð2Þ

where yN(t);Normal(mY,s
2
Y), mY = amW, a is a known

constant, and mW is the mean size of shock load.

Soft failure process. A soft failure process consists of a
degradation process and shock damage, that is,
S(t)=X(t)+Y(t). If soft failure state exceeds soft fail-
ure threshold TS, the system fails and we set S(t)=TS.
By using equations (1) and (2), S(t) is the soft failure
process state, which is derived as

SðtÞ ¼
Sðt� DtÞ þ b � Dt if NðtÞ �Nðt� DtÞ ¼ 0; and Sðt� DtÞ þ b � Dt\TS

Sðt� DtÞ þ b � Dtþ yNðTÞ if NðtÞ �Nðt� DtÞ ¼ 1; and Sðt� DtÞ þ b � Dtþ yN tð Þ\TS

TS else

8><
>: ð3Þ

Hard failure process

Shock process. A shock process is due to fracture, earth-
quake, and other external forces, with shock time and
the magnitude of shock load. The sizes of shock load
wi for the ith shock are assumed to be independent and
identically distributed (i.i.d.) normal random variables.
For a particular system, one shock happens at t, the
shock numbers increase N(t)�N(t� Dt)=1, and the
size of shock load is wN(t). In time interval Dt, no more
than one shock could happen. Therefore, without con-
sidering degradation, the shock process state is

W(t)=
0 N(t)�N(t� Dt)=0
wN(t) N(t)�N(t� Dt)=1

�
ð4Þ

where wN(t);Normal(mW,s2
W).
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Degradation damage. Degradation damage to the shock
failure process is based on the degradation process.
Then, the exact model DD(t) for degradation damage
D(t) is presented. In this case, degradation damage
requires measuring the resistance to hard failure at dif-
ferent degradation state levels. However, sometimes it
is hard to divide the shock damage and the degradation
process by measurement in field. Therefore, a soft fail-
ure damage model DS(t) is provided as the degradation
damage D(t), which does not need to distinguish the
degradation process from shock damage.

1. Degradation damage model
The ratio of X(t) to TS indicates consumption of
resistance to soft failure. When the degradation
state is in the highest level of the degradation pro-
cess, the resistance to the hard failure is THD. The
degradation damage is

DD(t)= TH � THDð Þ � X(t)

TS

� �
ð5Þ

2. Soft failure damage model for degradation damage

In practice, it is hard to separate the degradation
state and shock damage to the soft failure process
exactly. Also, shock damage is proved to affect the
resistance to hard failure, so soft failure state is applied
instead of the degradation state. The ratio of S(t) to TS

indicates consumption of resistance to soft failure.
When the soft failure state is in the highest level of the
soft failure process, the resistance to hard failure is
THS. The degradation damage to hard failure process is
increasing with the soft failure state in this case. The
soft failure damage model for degradation damage is

DS(t)= TH � THSð Þ � S(t� Dt)+b � Dtð Þ
TS

� �
ð6Þ

Hard failure process. A hard failure process contains the
shock process and degradation damage, that is,
H(t)=W(t)+D(t). D(t) is DD(t) when the resistance
to hard failure is measurable at different degradation
state levels in equation (5) or is DS(t) when that is not
measurable in equation (6). If hard failure state exceeds
hard failure threshold, the system fails and we set
H(t)=TH. By using equation (4) and the definition of
the hard failure, H(t) is the hard failure process state,
which is derived as

H(t)=
D(t) if N(t)�N(t� Dt)=0, and H(t� Dt)=0
D(t) if N(t)�N(t� Dt)=1, and H(t� Dt)=0 and W(t)+D(t)\TH(t)
TH else

8<
: ð7Þ

System process

The system is subjected to two dependent competing
failure processes: a soft failure process and a hard fail-
ure process. Any compound process results in failure.
They are dependent on the same degradation process
and the shock process. Therefore, the system reliability
is defined as

R(t)= Pr S(t)\TS and H(t)\THf g ð8Þ

Since the soft failure process state is measurable, the
system state indicator is represented by the soft failure
process, derived as

I(t)=
S(t) if I(t� Dt)\TI, and S(t)\TS and H(t)\TH

TI others

�
ð9Þ

where TI =TS.
For a critical system, the predicted RUL is defined

by the first hitting time since the last estimation, when
it exceeds a pre-set critical threshold in the soft failure
process or in the hard failure process. If the last
updated estimated time is tes, the RUL for prediction is
defined as

RUL tesð Þ= t� tesjinf t : S(t)5TS or H(t)5THð Þjff
S tesð Þ\TS and H tesð Þ\THð Þgg ð10Þ

Prognostics method

The prognostics method is based on dependent compet-
ing model. The proposed model and in situ data are
integrated to predict future behavior by the particle fil-
ter. It contains the state transition function I(t) and
measurement function

Z(t)= h I(t),O(t)ð Þ ð11Þ

where Z(t) is the measured data and O(t) is the mea-
surement noise, which is taken as the Gaussian noise
O(t);N(0,v2). There are two basic types of prognostic
methods, classified with and without the consideration
of measurement noise.

Method without measurement noise

If the measurement noise is not considered in prognos-
tics, posterior distribution of system state indicator is
only based on prediction model, and it can be expressed
by an integral as follows
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p I tes + lð ÞjZ 1 : tesð Þð Þ

=

ð
� � �
ð Ytes + l

j= tes + l

p I(j)jI(j� 1)ð Þp I tesð ÞjZ 1 : tesð Þð Þ
Yk+ l�1

j= k

dI(j)

ð12Þ

where Z(1 : tes) is the measured system state indicator
and l is the predicted time since tes.

Method with measurement noise

In field, measurement noise is unavoidable with the
change in environment and measure tools. The mea-
sured system state indicator is Ih(tes + l), and the prob-
ability distribution is derived as

p Ih tes+ lð ÞjZ(1 : k)ð Þ

=

ð
:::

ð Ytes + l

j= tes +1

p Ih(j)jI(j)ð Þp I(j)jI(j� 1)ð Þ

p I tesð ÞjZ(1 : k)ð Þ
Ytes + l�1

j= tes

dIh(j) ð13Þ

In the prediction process with measurement noise,
we assume that when the measured system state reaches
the pre-set threshold, the system will also be shut down.

Numerical example

The numerical data of a micro-engine from Sandia
National Laboratories and Jiang et al.7 are listed in
Table 1. In this case, the soft failure is usually the bro-
ken pin, which results from pin wear of rubbing sur-
faces as the degradation process with the debris of the
pin as the shock damage. Meanwhile, the hard failure
is usually the hub fracture, which results from external
shocks to the gear hub as the shock process with the
wear of the hub as the degradation damage. Therefore,
the object is subjected to a dependent competing failure
process. The simulation data for observation state are
used for the entire process to compare the filtered result
and true state.

The RUL estimation framework with degradation
damage model is shown in Figure 2. First, the whole
process is divided by the estimated time into two parts:
the estimation process and the prognostic process.
Second, in the estimation process, the system transition
with equation (9) is applied with the soft failure process
by equation (3) and the hard failure process by equa-
tion (7). From Figure 2, it is seen that the application
of the proposed model allows jumps in state transition
with good estimation result. Third, at the last updated
estimated time shown as the line of dashes, the last esti-
mated system state is an essential connection between
the estimation process and the prognostic process. In
the particle filter, the particles with weights represent
the distribution of the system state. Fourth, in the prog-
nostics process, the prognostic system states are pre-
dicted by equation (12) or (13). Finally, the PDF of

RUL is plotted by kernel smoothing function estima-
tion, which reflects the competing result of the hard
failure process and the soft failure process. Therefore,
this whole framework enables RUL estimation for
dependent competing failure process.

Meanwhile, PDF of system state at each step is
shown in Figure 3. At first, when the measured system
state is provided, distributions of system state are con-
centrated on the estimated system state. After the last
estimation point, they are separated into two main
paths with the influence of the hard failure. In prognos-
tics without observations, the distribution expands with
time steps. Finally, because system states stop increas-
ing when they cross the system state threshold, the dis-
tribution of system states is concentered on the
threshold with time steps.

Sensitivity analysis of Pr (RUL) on THD is per-
formed and plotted in Figure 4 for degradation damage
model without noise. THD has a significant impact on

Figure 2. Framework of RUL prognostics with degradation
damage model.

Table 1. Degradation and shock processes’ example values.

Parameters Value Sources

TS 0.00125 mm3 Tanner and Dugger52

THS 1.4 GPa Assumption
TH 1.5 GPa Tanner and Dugger52

f 0 mm3 Tanner and Dugger52

b N(8:4823e� 9,
6:0016e� 10) mm3

Tanner and Dugger52

l 5e25 Assumption
Y N(1:2e� 4, 2e� 5) mm3 Assumption
W N(1:2, 0:2) GPa Assumption
a 1e 2 4 mm3/GPa Assumption
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Pr (RUL) in this case. When THD increases, Pr (RUL)
gets smaller first and larger after a critical point. In par-
ticular, when THD=1:5, the degradation damage is
always 0. In the early stages of failures, there are more
hard failures than soft failure, as shown in Figure 2.
Therefore, the results in Figure 4 agree with the cases
that if there are two systems with the same shock loads,
the one with higher degradation damage is more sus-
ceptive to hard failure. It implies that the improvement
of resistance to degradation damage will reduce hard
failures.

In Figure 5, sensitivity analysis of mean RUL
E(RUL) on THD and THS is performed for degradation
damage model and soft failure damage model, compa-
nied with measurement noise cases. E(RUL) in degra-
dation damage model is larger than that in soft failure
damage model and tends to be the same with the
increase in THD and THS. In both the proposed models,
E(RUL) grows with THD and THS, respectively. And
compared with the model without damage to hard

failure, the presented models have a great impact on
E(RUL). It implies that reducing the damage to hard
failure extends the RUL in systems that experience
dependent competing processes. At the same time, the
measurement noise will reduce the E(RUL) in each
damage model. It indicates that the measurement noise
is responsible for the prediction error of RUL.

In Figure 6, sensitivity analysis of E(RUL) on v

with failure threshold model is performed and plotted.
It appears that the E(RUL) increases with measure-
ment noise. However, as a matter of fact, increment of
E(RUL) raises the estimated RUL instead of the actual
RUL. It implies that larger measurement noise will
reduce the ability of fault diagnostics.

Conclusion and future directions

In this article, we establish a system model with com-
pound processes that consisted of elemental processes.
Specially, the compound processes contain a soft fail-
ure process and a hard failure process, and the

Figure 4. Sensitivity analysis of Pr (RUL) with degradation
damage model on THD without measurement noise.

Figure 5. Sensitivity analysis of E(RUL) on THD and THS.

Figure 6. Sensitivity analysis of E(RUL) on v.

Figure 3. Soft failure degradation state distribution with
degradation damage model.
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elemental processes contain a degradation process and
a shock process. First, the PHM framework for depen-
dent competing failure processes is illustrated. Second,
the system model for dependent competing is built with
the shock damage and the proposed degradation dam-
age. Third, RUL estimation contains information both
from off-line database and on-line observations, by the
particle filter for nonlinear processes with sequentially
updated system health condition. Finally, the example
from field experiment for off-line data and simulation
data for the real-time process shows that the proposed
system model plays an important role in estimating
RUL. Sensitivity analysis indicates that (1) degradation
damage to the hard failure process reduces the RUL in
systems with dependent competing processes and (2)
measurement error results in imprecision of the pre-
dicted distribution of RUL and reduces the ability of
fault diagnostics. In future, we will perform RUL esti-
mation by combining shock damage and degradation
damage with PoF approaches. This will potentially
improve the development of decision-making strategies
for the accuracy and precision of prediction in industry.
Especially, the elemental processes will be replaced by
physical processes of failures to be applied for particular
products to obtain more accurate results.
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Appendix 1

Notation

D(t) degradation damage to a hard failure
process by a degradation process

H(t) hard failure process state
I(t) system state indicator
N(t) number of shock loads up to time t
S(t) soft failure process state
tes time to estimate the system state with the

last observation
TH threshold level for a hard failure
THD resistance to a hard failure with the

highest level of degradation damage
THS resistance to a hard failure with the

highest level of soft failure damage
TI threshold level for a system failure
TS threshold level for a soft failure
W(t) shock process state
X(t) degradation process state
Y(t) shock damage to a soft failure process by

a shock process
l arrival rate of random shocks
v deviation of the measurement noise
Dt time interval
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