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Abstract. A neural network based interactive physical programming approach 
is proposed in this paper. The approximate model of Pareto surface at a given 
Pareto design is developed based on neural networks, and a map from Pareto 
designs to their corresponding evaluation values is built. Genetic algorithms is 
used to find the Pareto design that best satisfies the designer�s local preferences. 
An example is given to illustrate the proposed method. 

1   Introduction 

Physical programming developed by Messac [1], has been successfully applied to 
high-speed-civil-transport plane design [1], control, structure design [2], interactive 
design [3], [4] and robust design [5]. Interactive physical programming is based on 
physical programming. It takes into account the designer�s preferences during the 
optimization process, and allows for design exploration at a given Pareto design.  

Based on the Tappeta, Renaud, and Messac�s work [4], this paper mainly obtains 
the following achievements: (1) The approximation to the Pareto surface around a 
given Pareto design is developed using neural network for design exploration. (2) A 
map from Pareto designs to their corresponding evaluation values, called the de-
signer�s local preferences model, is built using neural networks. (3) Genetic algo-
rithms is used in a optimization process with the designer�s local preferences model as 
objective function to search for the Pareto design that best satisfies the designer�s 
local preferences. The obtained Pareto design is further used as the aspiration point in 
a compromise programming problem [4] to obtain the final optimal design. 

2   Interactive Physical Programming Based on Neural Networks 

Interactive physical programming takes into account the designer�s preferences during 
the optimization process, which enables the designer to partly control the optimization 
process. The flow chart of interactive physical programming is shown in Figure 1, 
with detailed explanations given as follows.  
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Fig. 1. Flow chart of interactive physical programming. 

2.1   First-Order Pareto Surface Approximation around a Given Pareto Design 

The initial Pareto design that best satisfies the designer�s initial preferences, *f , is 
generated by solving a physical programming problem. The next step is trying to 
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achieve the approximation to the Pareto surface around *f  as accurately as possible, 
so that the designer can explore other Pareto designs in the following interactive deci-
sion making process. We make sensitivity analysis at Pareto design *f , and generate 
the first-order Pareto surface approximation [4]. The first-order Pareto surface ap-
proximation is represented by a linear equation describing the relationship among all 
the objective functions. 

2.2   Pareto Designs Generation and Neural Network Model of Pareto Surface 

To represent the Pareto surface more accurately, more information about other Pareto 
designs around *f  is required. Usually, to a multiobjective optimization problem 

with m  objectives, at least 2/)1( −mm  Pareto designs are required. A projection 
method including two steps, the predictor step and the corrector step, is used to gener-
ate these Pareto designs [4].  

Pareto surface is highly nonlinear, nonsmooth, and has discontinuity. Tappeta et al. 
used second-order polynomial to represent the Pareto surface [4], however, it can�t 
describe the attributes of the Pareto surface mentioned above. Neural networks [6], 
[7] is good at representing complex nonlinear model, and it can describe the Pareto 
surface more accurately. There are interior relationships among the objective func-
tions through design variables, and these relationships should be embodied as much as 
possible between inputs and outputs. Therefore, the neural network model of the 

Pareto surface is built with ),...,,( 121 −mfff  as input and 1 2
121 ...+

− ⋅⋅⋅⋅m
mm ffff  as 

output. 

2.3   Interactive Decision Making Strategy 

The flow chart of the interactive decision making strategy is shown in Figure 1. The 
Pareto design *f  is Pareto optimal, and there�s no other feasible design that can im-

proves all the objective functions. But the designer may want to improve some objec-
tives at the expense of some other objectives, this is called the designer�s improving 
preferences. The improving preferences can be specified by qualitative sentences, 
e.g., improve if , jf , and sacrifice kf . 

After specifying the improving preferences, a set of candidate Pareto designs that 
satisfy the improving preferences are generated around the current Pareto design *f  

using the neural network model of Pareto surface. They are presented to the designer 
using the Pareto visualization tool, which will help the designer to evaluate these 
candidate Pareto designs.  

These candidate Pareto designs are evaluated using qualitative-quantitative analy-
sis [8]. The qualitative part is evaluating the candidate Pareto designs with Analytic 
Hierarchy Process (AHP). The quantitative part is evaluating the candidate Pareto 
designs with quantitative criteria based on the preference functions of all the objec-
tives. We combine four proposed quantitative criteria with the AHP approach to 
evaluate the candidate Pareto designs, and determine an evaluation value with respect 
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to each candidate Pareto design to represent the designer�s preference on the Pareto 
design. 

After examining the candidate Pareto designs presented, the designer can generated 
a different set of approximate Pareto designs with current improving preferences, or 
modify current improving preferences and generate new approximate Pareto designs, 
or select one of the candidate designs presented if he is satisfied with it and then turn 
to the next step.  

Finally, with the objective functions of the Pareto designs as inputs, the corre-
sponding evaluation values as outputs to train a neural network, the neural network 
model of the designer�s local preferences can be built.  The neural network model of 
the map is called the neural network model of the designer�s local preferences. The 
method developed in reference [4] to determine the Pareto design that best satisfies 
the designer�s local preferences is just selecting the Pareto design that best satisfies 
the designer�s local preferences from the candidates Pareto designs already generated. 
There�re infinite Pareto designs around *f , and it�s obvious that the designer can�t 
inspect all of them. Thus, the neural network based model gives us a continuous and 
more accurate model of the designer�s local preference.  

2.4   Determine the Final Design 

With ),...,,( 121 −mfff  as design variables, the evaluation value corresponding to the 
Pareto design as objective function, genetic algorithms [9] is used to search for the 
Pareto design localf  that minimizes the evaluation value. localf  is thus the Pareto de-

sign that best satisfies the designer�s local preferences. mf  is calculated via the design 

variables ),...,,( 121 −mfff  using the neural network model of the Pareto surface, and 
then the corresponding evaluation value can be calculated using the neural network 
model of the designer�s local preferences.  

The obtained Pareto design that best satisfies the designer�s local preferences, 

localf , is on the neural network model of the Pareto surface, and not on the real Pareto 

surface (although there�s minor difference between them). With localf  as the aspiration 

point, a compromise programming problem is solved [4], and the final design finalx  

can be obtained. The objective functions vector corresponding to finalx , finalf , is on 
the real Pareto surface. 

3   Example 

A symmetrical pinned-pinned sandwich beam that supports a motor is considered [2]. 
A vibratory disturbance (at 10Hz) is imparted form the motor onto the beam. The 
mass of the motor is ignored in the following analysis. The objectives of this problem 
are fundamental frequency, cost, width, length, height and mass. The design variables 
are },,,,{ 321 Lbdddx = , where L  denotes the length of the beam, b  is the width, and 

1d , 2d  and 3d  represent the heights of the three pieces of the beam [2].  
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The region limits of the design objectives� preference functions are shown in Table 1. 
The steps are shown as follows.  

(1) A physical programming problem is solved to obtained the initial Pareto design 
*f  and the corresponding design variables  

)0.3599 1867.6, 3.9967, 0.8747, 346.27, 162.94,(* =f . (1) 

)3.9967 0.8747, 0.3599, 0.3333, 0.3233,(* =x . (2) 

(2) Through the sensitivity analysis of the Pareto surface at *f , the first-order Pareto 

surface approximation around *f  is obtained. 30 Pareto designs around *f  are 
obtained. The neural network model of the Pareto surface is built. 

(3) Through the interactive decision making process, the candidate Pareto designs are 
generated, visualized and evaluated. The neural network model of the designer�s 
local preferences is built.  

(4) Genetic algorithms is used in the optimization process to obtain the Pareto design 
that best satisfies the designer�s local preferences. Then, a corresponding com-
promise programming problem is solved, and the final design can be obtained 

)0.3477 4.2,3.9479,183 0.7799, 325.7527, 160.3097,(final =f . (3) 

)3.9479 0.7799, 0.3477, 0.3230, 0.2954,(final =x . (4) 

Table 1. Physical programming region limits table. 

Design objectives Class type 
5ig  

4ig  
3ig  

2ig  
1ig  

Fundamental frequency 
f/Hz 

2-S 100 110 120 150 200 

Cost 
c/$∙m-3 1-S 2000 1950 1900 1800 1000 

Width 
b/m 2-S 0.30 0.35 0.40 0.45 0.55 

Length 
L/m 2-S 3.0 3.3 3.8 4.0 6.0 

Mass 
m/kg 1-S 2800 2700 2600 2500 2000 

Height 
h/m 

1-S 0.60 0.55 0.50 0.40 0.30 

4   Conclusions 

The interactive nature of the proposed interactive physical programming approach 
enables the designer to partly control the optimization process, which can improve the 
design efficiency and design result, and avoid wasting lots of time in the wrong direc-
tions during the design process. Neural networks, a powerful nonlinear modeling tool, 
is used to construct the Pareto surface model and the designer�s local preferences 
model, which makes them more accurate and reasonable. The continuous model of 
the designer�s local preferences can be obtained in this way, and thus the continuous 
optimization can be implemented. From the view of continuous optimization, the 
design that best satisfies the designer�s preferences can be obtained. 
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