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The appearance of macro-engineering and mega-project have led to the increasing complexity of modern
electromechanical systems (EMSs). The complexity of the system structure and failure mechanism makes
it more difficult for reliability assessment of these systems. Uncertainty, dynamic and nonlinearity
characteristics always exist in engineering systems due to the complexity introduced by the changing
environments, lack of data and random interference. This paper presents a comprehensive study on the
reliability assessment of complex systems. In view of the dynamic characteristics within the system, it
makes use of the advantages of the dynamic fault tree (DFT) for characterizing system behaviors. The
lifetime of system units can be expressed as bounded closed intervals by incorporating field failures, test
data and design expertize. Then the coefficient of variation (COV) method is employed to estimate the
parameters of life distributions. An extended probability-box (P-Box) is proposed to convey the present
of epistemic uncertainty induced by the incomplete information about the data. By mapping the DFT into
an equivalent Bayesian network (BN), relevant reliability parameters and indexes have been calculated.
Furthermore, the Monte Carlo (MC) simulation method is utilized to compute the DFT model with
consideration of system replacement policy. The results show that this integrated approach is more
flexible and effective for assessing the reliability of complex dynamic systems.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The large complex electromechanical systems (EMSs) have
been widely used in aviation and aerospace industry, electric
power system, civil machinery, etc. The complexity of system
structure and formidable manufacturing cost has limited the sys-
tem level reliability tests of those EMSs. It also makes the system
reliability indexes evaluation become infeasible, since a long time
reliability test and large quantities of statistical data are needed. In
practice, only a small amount of experimental data, field data and
engineering experience information are available, which makes it
almost impossible to evaluate the lifetime and reliability of system
through data analysis. Furthermore, the uncertainties caused by
the lack of data or knowledge, and the dynamic behavior also
affect the reliability of the EMS. Therefore, there is a strong
requirement to take a series of technological means to evaluate the
reliability indexes of EMS, and a comprehensive reliability
assessment of the entire system must be performed. Furthermore,
the consideration of dynamic uncertainty and maintainability of
x: þ86 28 6183 0227.
ng).
system or components is a crucial issue to be resolved for the
assessment of the reliability of complex EMS.

Reliability assessment [1–3] is implemented through the
design, testing, production, storage and usage phases of a product
or system, it is a process of analyzing and confirming the reliability
of system and its components. It is also a qualitative and quanti-
tative analysis technique to model and predict system reliability
throughout the product lifecycle. There are basically four aspects
of technical contents of system reliability assessment, including
reliability modeling, reliability data collection and processing, unit
reliability assessment and system reliability synthesis.

To obtain the reliability of a complex EMS, the reliability model
should be built to describe the failure logic relationship between
the whole system and its compositions. In recent decades, various
reliability modeling methods have been developed for complex
systems and the accuracy of the models is improved. Some clas-
sical static modeling techniques, including reliability block dia-
gram model, fault tree (FT) model, and binary decision diagrams
(BDD) model, have been widely used to model static systems.
While considering the complexity of modern EMSs, the dynamic
modeling techniques such as Markov model [4], dynamic fault tree
(DFT) model [5], and Petri net model [6] have been applied for
reliability modeling. DFT analysis method, first proposed by Dugan

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2016.02.003
http://dx.doi.org/10.1016/j.ress.2016.02.003
http://dx.doi.org/10.1016/j.ress.2016.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.02.003&domain=pdf
mailto:hzhuang@uestc.edu.cn
http://dx.doi.org/10.1016/j.ress.2016.02.003


J. Mi et al. / Reliability Engineering and System Safety 152 (2016) 1–152
et al. [7,8], is a mature and important method in reliability analysis
of dynamic systems. Since then many variations have been pub-
lished. As such, three criterions are given to rank basic events of
DFT, and a transforming method of logic gate is put forward by
Hao et al. in [9]. Approximate DFT calculations are presented by
Lindhe et al. [10] based on a Markovian approach, which was used
for water supply risk modeling and performed by standard Monte
Carlo (MC) simulations. Considering the interactive repeated
events in different dynamic gates, Merle et al. [11] proposed a new
analytic method to solve DFTs with priority dynamic gate and
repeated event. An improved sequential BDD method was pro-
posed for quantitative analysis of DFT with interactive repeated
events by Ge et al. [12]. Considering the state explosion and
computational efficiency problems in DFT model, Mo [13] pro-
posed a multi-value, decision-diagram-based DFT analysis method
to analyze the reliability of large dynamic system. A MC-based
approach was investigated by Rao et al. [14] to solve dynamic
gates, which can be used to alleviate the state space explosion
problem. To overcome the limitations caused by the increasing
size of FTs in traditional reliability assessment, Chiacchio et al. [15]
proposed a Weibull-based composition approach for large DFT to
reduce the computational effort. In view of the dynamic char-
acteristic in modern complex EMS, and taking advantage of the
dynamic modeling ability of DFT, a DFT model should be built on
the basis of system structure and failure behaviors.

As an inheritor of FT, Bayesian network (BN) has a similar state
description and reasoning pattern with FT method. It also has the
advantage of dealing with multi-state modeling and non-
deterministic fault logic representation [16]. BN is a directed
acyclic graph (DAG) for system modeling, which is a mathematical
model based on probability reasoning [17]. It was first proposed by
Pearl [18,19] and has been widely used in reliability and safety
analysis. Cai et al. [20] proposed a BN-based approach for relia-
bility evaluation of redundant systems including parallel systems
and voting systems by taking account of common cause failures
and imperfect coverage. Khakzad et al. [21] presented a new
formalism to model cold spare (CSP) gates and sequential enfor-
cing gates with various types of probability distribution functions.
Under this formalism, the discrete-time BNs were applied in risk
assessment and safety analysis of complex process systems. In
[22], BN was used to solve the Pandora temporal FTs, which is a
dynamic analysis technique that can capture the sequence-
dependent dynamic behavior of system. To overcome the short-
comings of traditional fault tree analysis method, a systemic
decision approach was presented in [23] by integrating the pre-
dictive, sensitivity and diagnostic analysis techniques in DBN
inference. BN has been used for reliability analysis of complex
systems with various kinds of uncertainties, and it has an advan-
tage to facilitate the estimation of system reliability by coping with
system complexity. Su and Fu [24] presented a causal logic method
for qualitative modeling of the BN reliability model of wind tur-
bine when considering the environmental factors and uncertainty.

Except for the nonlinear dynamic characteristic, the uncer-
tainty existing in complex EMS is always another important issue
which cannot be ignored. There are basically two types of uncer-
tainties, aleatory uncertainty and epistemic uncertainty. Aleatory
uncertainty arises from intrinsic variability and is irreducible,
which is also called objective uncertainty. It can be described and
propagated by probability theory. Epistemic uncertainty results
from incompleteness of knowledge or lack of data, it is called
subjective uncertainty [25,26]. Alternative theories and methods
have been proposed to represent epistemic uncertainty, such as
interval theory [27], evidence theory [28,29], possibility theory
[30], info-gap theory [31], random sets [32], fuzzy sets [33],
Bayesian approaches [34], probability-box (P-Box) [35–42], etc.
P-Box has an advantage for tackling the uncertain parameters
without precise probabilistic models in view of epistemic uncer-
tainties. A P-Box is specified by lower and upper (interval-type)
bounds on the cumulative distribution functions (CDFs) of uncer-
tain variables [35]. It has been widely used in reliability and risk
analysis and is suitable for diverse engineering fields. To build the
connection of P-Box with other uncertainty representations, a
generalized form of P-Boxes was defined by Destercke et al. [36].
Bayesian P-Boxes are used by Montgomery [37] for risk assess-
ment with multiple parameters distributions. Zhang et al. [38]
proposed an interval MC method. An interval importance sam-
pling method [39] and an interval quasi-MC simulation method
[40] in structure reliability analysis with the parameter uncer-
tainties modeled by P-Boxes have been investigated also. P-Box
was applied as a visual tool by Mehl [41] for cost uncertainty
analysis. Furthermore, Yang et al. [42] studied the hybrid reliability
analysis under both aleatory and epistemic uncertainty cohere
random variables and P-Box variables. To reduce the impact of
uncertainties on systems, the representation and quantification of
uncertainty need to be addressed first. For the epistemic uncer-
tainty induced by incomplete data, based on the definition of
P-Box, an extended parametric P-Box to is proposed to represent
the uncertainty in complex EMSs.

Moreover, the maintainability or reparability of components
can improve the reliability of whole system. When the replace-
ment policies are considered in EMSs with repairable components,
the MC simulation method can be used to compute the reliability
model. MC simulation method is a widely used method in relia-
bility analysis of complex systems. By using MC simulation
method, the system reliability can be calculated and the effect of a
variety of related factors (system reparability, dependency, etc.) to
system reliability can also be evaluated. In this regard, Taheriyoun
and Moradinejad [43] have combined the FT analysis method with
MC simulation method for reliability analysis of waste water
treatment plant. Manno et al. [44] presented a MC-based high
level modeling framework that is integrated with FT method for
reliability assessment of complex system with time dependencies.
They also gave a definition of repairable DFT in [45], and a Matlab
toolbox named RAATSS was presented based on adaptive transi-
tions system formalism. This can be used to model and evaluate
occurrence probability of top event when both repairable and non-
repairable subsystems are considered. On the basis of structure
function of DFTs, Merle et al. [46] proposed a quantitative analysis
method based on MC simulation. The structure function was
exploited, and the minimal cut sequences (MCSQs) can also be
determined by this MC-based method. A MC DFT method was
proposed by Zhang et al. [47] to analyze the reliability indexes of
phasor measurement unit.

When considering the dynamic characteristics, uncertainty and
maintainability of a system or components, a comprehensive
reliability assessment process of complex EMSs has been proposed
in this paper. The rest of this paper is organized as follows. In
Section 2, a BN reliability modeling process is introduced based on
DFT model, and the lifetime of dynamic logic gates is defined. The
lifetime distribution analysis has been performed based on the
coefficient of variation (COV) method. Section 3 constructs a MC
simulation-based framework for lifetime and reliability assess-
ment of complex EMSs with consideration of system reparability.
An extended parametric P-Box is defined to present the epistemic
uncertainty in Section 4. A case study of an EMS has been pre-
sented to demonstrate the effectiveness of the suggested reliability
assessment framework in Section 5. Finally, conclusions are made
in Section 6.
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2. A lifetime evaluation approach based on BN for complex
EMS

2.1. BN reliability modeling

Bayesian network is a DAG in which nodes represent random
variables and edges between the nodes represent the direct
dependency relationships among the variables [18–21]. In this
paper, the event-based BN reliability model proposed by Marquez,
Neil and Fenton [48–50] is employed to calculate the lifetime of
system. In this model, the lifetime of components, basic events and
logic gates of FT are represented by continuous nodes. Then the
nodes are connected by incoming arcs to next events layer. This
kind of BN has been defined as continuous time BN by Hofmann
[51] et al., then Boudali and Dugan have given a more accurate
definition of continuous time BN [52]. By using the chain rule of
probability, the joint probability distribution f(x) of a set of con-
tinuous variables X1;⋯;XN will be

f x1;⋯; xNð Þ ¼ ∏
N

i ¼ 1
f xi jpaðXiÞð Þ; ð1Þ

where paðXiÞ are the parent variables of nodeXi.
In this paper, BN takes a DFT-like modeling form for a dynamic

system. By addressing the issue of traditional FT analysis method
which cannot model the sequence correlation of system, Dugan
et al. [7,8] proposed a novel DFT analysis method to overcome the
limitation. Dynamic logic gates are defined to describe the
sequential rules and random failure behaviors of the systems.
There are three kinds of commonly used dynamic gates: the
priority AND (PAND) gate, the functional dependency (FDEP) gate
and the spare (SP) gates [9,13,14]. Based on the definition and
failure mechanisms of dynamic gates, the lifetime logic relation-
ships between the inputs and the outputs of the basic static logic
gates and commonly used dynamic logic gates of a DFT are given
as follows [48–54]:

(1) AND gate: When all the input events or components Xi (i¼1,
…,n) of an AND gate fail, the output of the gate fails, and the
lifetime of component Xi is denoted by Ti. Then, the time-to-failure
of the AND gate can be defined as a random variable

TAND ¼max
Ti

Tif g: ð2Þ

The failure probability of the output of the AND gate in time
interval (0, t) is

FAND tð Þ ¼ P TANDrtð Þ ¼ P T1rt;…; Tnrtð Þ

¼ P max
Ti

Tif grt
� �

: ð3Þ

(2) OR gate: Because the output of an OR gate fails when at
least one of the inputs fails, the lifetime of the OR gate can then be
defined by

TOR ¼min
Ti

Tif g: ð4Þ

The failure probability of the output of the OR gate is,

FOR tð Þ ¼ P TORrtð Þ ¼ 1�P T14t;…; Tn4tð Þ

¼ P min
Ti

Tif grt
� �

: ð5Þ

(3) PAND gate:The PAND gate is an AND gate, whose output
event occurs only when the input events occur sequentially from
left to the right. The input of PAND gate could be basic events or
output events of other logic gates. It integrates the logical
sequence or predefined order of inputs on the basis of AND gate.
Therefore, for a PAND gate with two input components X1 and X2,
the lifetime of PAND gate can be defined as,

TPAND ¼
T2 if T1rT2

1 otherwise
:

8><
>: ð6Þ

The lifetime distribution of output of PAND gate is

FPAND tð Þ ¼ P TPANDrtð Þ ¼ P T1rT2rtð Þ: ð7Þ
(4) SP gate:The SP gates are defined to model the system with

spares whose failure criteria cannot be expressed by combinations
of system basic events. It is composed of a primary component and
several spares with the same function. When the failure rate of
primary component is λ, then the failure rate of spare can be
denoted as αλ. Based on the different failure mechanism of spare
components, the SP gate can be divided into cold SP (α¼0), hot SP
(α¼1) and warm SP (0oαo1).

1) CSP gate: When ignoring the storage lifetime of the standby
units and the switching time of working subsystems, lifetime
output of CSP gate TCSP equals to the sum of the primary unit
lifetime Tpr (for primary unit Xpr) and backup units lifetimes Ti (for
spare units Xi when in active mode and i¼1,…,n). Hence, we have
TCSP¼TprþT1þ ,…,þTn. As such the failure probability for the
output of CSP is given as

FCSP tð Þ ¼ P TCSPrtð Þ ¼ P TprþT1þ ;…; þTnrt
� �

¼ Fpr tð Þ � F1 tð Þ �⋯ � Fn tð Þ: ð8Þ

This formula means the lifetime of CSP gate is equal to the
convolution of the lifetime of the primary unit Fpr(t) and backup
units Fi(t).

2) Warm spare (WSP) gate: For a warm standby system with
one primary unit Xpr and a spare Xsp, the failure rate of spare unit
in normal working condition is larger than that of standby mode.
Denote Tpr as the lifetime of the primary unit, Tsp and T'sp are the
lifetimes of spare unit in active mode and in standby mode
respectively. Therefore, the lifetime of this warm standby system
can be obtained by,

TWSP ¼
Tpr if T 'sprTpr

TprþTsp if T 'sp4Tpr

:

8><
>: ð9Þ

This equation illustrates that the lifetime of this system equals
to the lifetime of the primary unit Tpr when the spare unit fails
before the primary unit fails, i.e., T 'sprTpr . And the lifetime of
system is TprþTsp when the primary unit fails before the standby
units fail, i.e., T 'sp4Tpr .

3) Hot spare (HSP) gate: Because the HSP has the same failure
logic with static AND gate, the lifetime THSP of a system with one
hot spare unit equals to the maximum value of the backup unit
and primary unit, and THSP¼max(Tpr, Tsp).

(5) FDEP gate: A FDEP gate consists of several state dependent
basic events and one trigger input. The trigger input can be a basic
event or an output event of another gate in the DFT. The basic
events are forced to occur by the occurrence of trigger event,
which means the basic events are functionally dependent on the
trigger event. For non-repairable systems, the FDEP gate can be
modeled using OR gates. The lifetime of systemwith FDEP gate can
be computed by Eqs. (4) and (5).

In this logical framework, the marginal lifetime distributions
for basic components or events can be defined by any parametric
or empirical distribution. After the definitions of the lifetime and
the failure probability of the static and dynamic logic gates, the
reliability of a system at any mission time t with different kinds of
logic gates can be expressed as an analytic closed form solution by
the method in [49].
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2.2. The lifetime distributions analysis based on COV method

Suppose the lifetimes of a system and components have been
both expressed by random continuous variables, which means all
the nodes of a BN are continuous time variables. The mean value E
(T) of a variable T is used to quantitatively describe the working
hours of a system. The corresponding variance Var(T) shows the
discrete degree of a random variable. Variance is an absolute value
and cannot be used to compare the uncertainty degree of mean
lifetime in different situations. Therefore, the COV v is employed to
describe the uncertainty degree of lifetime. The COV is defined as
follows [55]

v Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tð Þ

p
E Tð Þ : ð10Þ

Vast use of this COV method in engineering practice shows that
it is easy for engineering applications. When the reliable lifetime
of system components or units is given, the COV method can be
employed to assess the parameters of their lifetime distributions.
For a component whose lifetime T obeys exponential distribution,
the distribution function is F(t; λ) and F(t)¼1�exp{�λt}, where λ
is the distribution parameter and also called the failure rate of this
component. Let θ¼1/λ, which is the mean time between failure of
a component whose lifetime is exponential distributed. F(t; λ) is a
monotonically increasing function with the mean value E(T) equals
to θ, and variance Var(T) is θ2. Then the COV vExp of exponential
distribution can be defined as

vExp Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tð Þ

p
E Tð Þ ¼

ffiffiffiffiffiffi
θ2

p
θ

¼ 1; ð11Þ

which means the uncertainty degree of exponential distribution is
fixed. For lifetime variable that follows exponential distribution,
the reliable lifetime tExpR is given as [56],

tExpR ¼ λ�1 ln R�1; ð12Þ
where R (0rRr1) is system reliability. Then, when the reliable
lifetime is known, the parameter λ can be computed by Eq. (12).

For two-parameter Weibull distribution F(t; β, η), the dis-
tribution function is F(t)¼1�exp{�(t/η)β}, where β is the shape
parameter and η is the scale parameter. The mean value of Weibull
distribution is E(T)¼ηΓ(1þ1/β) and variance is Var(T)¼η2[Γ
(1þ2/β)�Γ2(1þ1/β)], where Γ αð Þ ¼ R1

0 xα�1e�xdx (α40) [57].
The COV vWb of the Weibull distribution is

vWb Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tð Þ

p
E Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 Γ 1þ2β�1

� �
�Γ2 1þβ�1

� �h ir

ηΓ 1þ2β�1
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ2β�1Þ
Γ2ð1þβ�1Þ

vuut �1: ð13Þ

The COV of Weibull distribution is decreasing with the
increasing of shape parameter β, which means the uncertainty
degree of random variable increases as β becomes smaller. For
Weibull distribution, the reliable lifetime tR, which is the lifetime
of a system or a component when system reliability equals to R, is
given by

twb
R ¼ η � ln R tð Þð Þ 1

β : ð14Þ
For logarithmic normal (lognormal) distribution F(X; μ, σ), μ is

the location parameter (logarithmic mean) and σ is the shape
parameter (logarithmic variance). They are also the mean value
and standard variance of composite variable X¼ ln(t). Then the
mean value and variance of primitive variable T is E(T)¼exp
{μþσ2/2} and Var(T)¼(exp{σ2}�1)exp{2μþσ2} [57]. Therefore,
the COV vLogn of lognormal distribution can be written as

vLogn Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tð Þ

p
E Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 �1
� �

e2μþσ2
q

eμþ
σ2
2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 �1
� �

e2μþσ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μþσ2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 �1

p
: ð15Þ

This formula indicates that the COV of a random variable, which
follows lognormal distribution, is only related to its logarithmic
variance and increases with the increasing of logarithmic variance.
This makes the evaluation of COV easier, since it is uncorrelated
with logarithmic mean.

The relationship between parameters μ and σ with the reliable
lifetime tR can be represented as

tLognR ¼ exp μ�σzR
	 


; ð16Þ

where zR is the R (0rRr1) quantile of the standardized normal
distribution N(0, 1). It can be gotten by looking up the quantile
table of standardized normal distribution.

In engineering practice, it is often difficult to obtain the accu-
rate lifetime data of complex systems. However, by incorporating
the field data, experimental data and the experience of engineers,
it is always possible to get an approximate range of key compo-
nents’ lifetime. Accordingly, the service lifetime of a key compo-
nent can be expressed as a bounded closed interval TI on real
number set R, and

TI ¼ TL; T
U

h i
¼ TAR : TLrTrTU
n o

; ð17Þ

where T is an interval variable, TL and TU are the lower and upper
bounds respectively.

The mean value T and deviation Tr of interval number TI are
defined as follows [58],

T ¼ TLþTU

2
and Tr ¼ TU�TL

2
: ð18Þ

Then the interval variable TI can be rewritten as

TI ¼ T�Tr ; TþTr� �
: ð19Þ

The COV of lifetime variable T can be represented as

~v ¼ Tr

T
¼ TU�TL

TUþTL
: ð20Þ

Based on the lifetime data of a component, the COV of this
component can be calculated by Eqs. (18)–(20). When the lifetime
distribution and the reliable lifetime tR are known, the distribution
parameters can be computed by Eqs. (11)–(16).
3. A lifetime and reliability assessment method for repairable
EMS based on MC simulation

After the FT modeling of a coherent system with several com-
ponents and subsystems, a static FT or a DFT model is built. When
the lifetime of components follows exponential distribution,
Weibull distribution or lognormal distribution, a MC simulation-
based method can be applied to simulate the FT model. The time-
to-failures of all the Minimal Path Sets (MPSs) of the system FT are
sampled using MC simulation method. Then the minimum value of
all the lifetime of MPSs is regarded as a sampling lifetime value of
the system. The reliability indexes of the system can be estimated
through the statistical analysis of sampling records. This MC
simulation-based method can dynamically characterize the relia-
bility and failure feature of the system and its components.
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3.1. The relationship between mean lifetime and MPSs of system

For a system S with n basic components Xi (i¼1, 2,…,n), the
system structure can be expressed as

S¼ X1;X2;⋯;Xi;⋯;Xnf g: ð21Þ
Suppose the distribution function of each component is Fi(t) for

i¼1,2,…,n. The structure function isФ[X(t)], where X(t) is a vector
composed by the performance state of basic components xi(t) for
i¼1, 2,…, n at time t, and is written as

X tð Þ ¼ x1 tð Þ; x2 tð Þ;⋯; xi tð Þ;⋯; xn tð Þ	 

; ð22Þ

where xi(t)¼1 when the ith basic component fails at time t,
otherwise xi(t)¼0. Then the system performance state Ф[X(t)]
equals to 1 when the system works well at time t, otherwise Ф[X
(t)] equals to 0.

Using MC simulation method to sample data for each basic
event, the sampling value of normal working time of the ith
component is ti ¼ F �1

i η
� �

. For a FT with m MPSs, the ith path set
with v basic events is denoted by Si (1r irm), in which each basic
failure event is denoted as Xj (1r jrv). Then path set Si can be
expressed as [59,60]

Si ¼ ∏
v

j ¼ 1
Xj ¼ ∏

Xj ASi

Xj: ð23Þ

The system success event S can be expressed as the sum-of-
product of events Xj, which can be represented by the following
formula

S¼ S1þS2þ⋯þSm ¼
Xm
i ¼ 1

Si ¼
Xm
i ¼ 1

∏
Xj ASi

Xj

 !
: ð24Þ

For a system with n basic components, using MC simulation
method to sample the lifetime of each component, a set of lifetime
sampling value can be obtained and the kth time of sampling for n
components can be written as tk1;⋯; tkn

� �
. Based on the definition of

MPS, we can find that it represents a success state of the whole
system, and the normal working of all basic events in this MPS will
cause the success of this path set. This means the MPS will be
failure only when at least one event in this MPS fails. Therefore, for
the kth time of lifetime sampling, the normal working time of MPS
Si can be calculated by

Tk
i ¼min

xj ASi
tkj
� �

; ð25Þ

where the superscript k represents the ith lifetime sampling, and
subscript j is the serial number of basic event or component for
1r jrn. The whole system will success for at least one MPS
appears, then the lifetime of system at ith time sampling can be
obtained by

Tk ¼ max
1r irm

Tk
i

� �
: ð26Þ

Repeat the previous lifetime sampling process N times, a
sample value of the mean lifetime of system is
Ts_mean ¼ 1=N

PN
k ¼ 1 Tk. Let Yk be the kth sampling time of a top

event. Compare with a given time tk, if Yk otk, it means the system
is failed at time tk, and the failure number of system is cumulated
as Nk. Based on the statistical data, the reliability of system Rk at a
given time tk can be calculated as Rk¼Nk/N.

3.2. Mean lifetime evaluation of system based on MC simulation
method

According to the literature investigation and engineering
experience, the influence of the replacement of components in
reliability analysis of complex system cannot be ignored [61]. In
this section, the mean lifetime of the sample system is evaluated
by MC simulation method when considering the components
replacement, and the result is compared with the situation that
components replacement is ignored.

3.2.1. Lifetime evaluation for non-repairable system
When the system is non-repairable, to calculate the lifetime of

system we should get the MPSs after the FT modeling of the sys-
tem. DFT model includes different types of dynamic logic gates
such as PAND, FDEP, CSP and HSP gates. So, the occurrence of top
event is not only related to the combination of basic events, but
also related to the occurrence priority of these basic events. In
order to reflect this dynamic characteristic of DFT, the MCS of
static FT is extended to minimal cut sequence (MCSQ) [14], which
is a minimal failure sequence that causes the occurrence of the top
event of DFT. The generating procedure of MCSQ for DFT can refer
to [62].

MC simulation can be applied to solve the problem if the
parametric distributions of basic events are known. Matlab soft-
ware can be used to generate the random failure times of each
component. By calculating the steps in the former subsection with
M simulations, the mean lifetime of the system will be assessed.

3.2.2. Lifetime evaluation for repairable system
Assume that the system state after component replacement is

“as good as new”, which is a perfect repair model. When con-
sidering the component replacement, the mean lifetime of system
can be estimated through the mean lifetime of basic components
by using MC simulation method.

Suppose a system has l components, the lifetime distributions
of different components follow exponential distribution, Weibull
distribution and Lognormal distribution with l1, l2 and l3 compo-
nents respectively, where l1þ l2þ l3 ¼ l. Let tx denote the lifetime of
a component and Rx(tx) denote its corresponding reliability.

For a component with lifetime tx obeying exponential dis-
tribution, according to Eq. (12), the failure rate of component x can
be gotten as λx, for x¼ 1;2;⋯; l1.

For Weibull distribution, the reliable lifetime of component x
can be calculated by Eq. (14) and

tx ¼ ηx � ln Rx txð Þð Þ1=βx ; ð27Þ
where x¼ l1þ1; l1þ2;⋯; l2.

For Lognormal distribution, the reliable lifetime of component
x can be calculated by Eq. (16) and

txR ¼ exp μx�σxzxR
	 


; ð28Þ
where x¼ l2þ1; l2þ2;⋯; l3, and zxR is the R quantile of the stan-
dardized normal distribution N(0, 1).

Then the flow diagram of service lifetime assessment of sample
system using MC simulation method is shown in Fig. 1.

The main steps are as follows:

Step 1: By using the MC simulation method, according to the
parameters λx, ηx, mx, σxand μx, which can be predicted by
Section 3, the pseudo-failure time tExppx (x¼ 1;2;…; l1), tWb

px
(x¼ l1þ1; l1þ2;…; l2) and tLognpx (x¼ l2þ1; l2þ2;…; l) can be
generated for exponential distribution, Weibull distribution
and lognormal distribution, respectively.
Step 2: By simulating the actual replacement situation of system
components, the pseudo-failure time of periodic replacement
components are determined. For replacement components, if
the generated pseudo-failure time tpx is less than or equals to
replacement time Tzx, then this component will fail at time tpx. If
tpx is larger than Tzx, it means that this component still survives
in this renewal cycle. Then system proceeds to next cycle, a new
pseudo-failure time for component is generated and compared



Fig. 1. The flow chart of the service-life assessment based on MC method.
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to Tzx. Repeating this process until the pseudo-failure time of the
component is determined. Therefore, in this simulate process,
the pseudo-failure time of a replacement component should be
jointly determined by tpx and Tzx.
Step 3: Based on the relation between system cut sets and sys-
tem mean lifetime in the former subsection, the pseudo-failure
time of system tps is equal to the maximum pseudo-failure time
of cut sets in any simulation process. The pseudo-failure time of
a cut set equals to the minimal pseudo-failure time of each basic
component. The time-to-failure of repairable components is
determined by step 2.
Step 4: Repeating the steps 1 to 3 for M times, we can get the
system pseudo-failure time tps; j

	 
M
j ¼ 1 and after sorting these M

data, an ordered data sequence can be obtained as tps;j'
	 
M

j ¼ 1.
Then the service lifetime of system with reliability Rs tsð Þ is
ts ¼ t':

ps; N U 1�Rs tsð Þð Þ

3.3. Importance sorting by possibility-based NSG ranking method

FT describes the logic relationship of system failure events and
expresses the system structure. On the basis of the system lifetime
assessment, the system reliability and the importance of each
component can also be evaluated. The importance of components
is related to the system structure, the lifetime distribution of each
component and the mission time. Therefore, the ranking of com-
ponent importance will be significant for improving the system
design and determining the detection site of system when it is
failed. It also can give the guidance for developing a checklist for
system diagnosis.

There is no standard consensus on the importance due to the
difference of design objects and requirements. The commonly
used indexes of importance measure in engineering are prob-
ability importance, structural importance and critical importance.
In this paper, the probability importance degree is analyzed after
which the weak link of the system can be confirmed. When con-
sidering the interval uncertainty of system, the probability
importance of the ith component of a system with n components
is denoted as I½ �g ið Þ, which can be computed by the following
equation,

I½ �g ið Þ ¼ ∂ g Fð Þ½ �
∂ F½ �i tð Þ

; i¼ 1;2;⋯;n ð29Þ

where F½ �i tð Þ is the interval failure probability or unreliability of
component i at mission time t, g Fð Þ½ � is the interval probability
function of top event and Fs tð Þ is the unreliability of the system.

When the importance of components is obtained and expres-
sed as a group of interval numbers, the ranking of importance can
be performed by interval number ranking methods. To compare
the incidence of each component to the whole system, the fol-
lowing possibility-based NSG ranking method [63–65] is used to
rank the importance of components represented by interval

numbers. For interval numbers a½ � ¼ aL; aU
� �

and b
� �¼ bL; b

U
h i

, the

length of the interval numbers l([a]) and l([b]) are given by

l a½ �ð Þ ¼ aU�aL; l b
� �� �¼ bU�bL: ð30Þ

Then the possibility of a½ �Z b
� �

can be defined as

p a½ �Z b
� �� �¼ min 0;1� max

aU�bL
l a½ �ð Þþ l b

� �� �;0
 !( )

¼
1 aLZbU

aU �bL
l a½ �ð Þþ l b½ �ð Þ aU4bL and aLobU

0 aUrbL;

8>><
>>: ð31Þ

where aLZ0; bLZ0. The possibility degree reflects the degree of
interval number [a] is larger than [b], which means when
p a½ �Z b

� �� �
40.5, there is a higher possibility that [a]Z[b]. An

interval ranking method can be derived based on this measure-
ment. When the importance of system components are a set of
interval numbers ai½ � ¼ aL;i; aUi

� �
for i¼1,…,n, by pairwise compar-

ison of the interval numbers using the Eqs. (30) and (31), the
corresponding possibility pi;j can be obtained and is denoted as
pi;j ¼ p ai½ �Z aj

� �� �
(i¼1,2,…,n; j¼1,2,…,n). Then a possibility
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matrix P is built and given by

P¼

p1;1 p1;2 ⋯ p1;n
p2;1 p2;2 ⋯ p2;n
⋮ ⋮ ⋱ ⋮

pn;1 pn;2 ⋯ pn;n

0
BBBB@

1
CCCCA: ð32Þ

Then denote λi ¼
Pn

j ¼ 1 pi;j as the row sum of the possibility

matrix P, λ¼ λ1 λ2 ⋯ λn
� �T as the corresponding row sum

vector. The ranking vector ω¼ ωið Þ of matrix P can be given by

ωi ¼
1

n n�1ð Þ λiþ
n
2
�1

� �
: ð33Þ

The interval numbers [ai] will be sorted based on the elements
of vector ω. This method can be used to assess and compare the
importance of each component with respect to the system.

When comparing the introduced probability-based ranking
method with the deterministic sorting method, the distinct
advantage of the probability-based method is that it not only helps
for ranking the interval numbers, but also gives an estimation of
the difference degree of two interval numbers. In addition, it can
reflect the uncertainty of interval numbers. Therefore, this method
is much more adaptive to engineering practice and has great
theoretical significance.
4. Extended parametric probability-box for epistemic uncer-
tainty in EMS

Considering the epistemic uncertainty of the system caused by
incomplete data, the reliable lifetime of system can be given as
interval numbers. From Eqs. (13), (15) and (20), the shape para-
meter β for Weibull distribution and logarithmic standard variance
σ for Lognormal distribution are considered as precise numbers
whereas η and μ of Eqs. (14) and (16) are defined as interval
parameters, which varies in ½ηL;ηU � and ½μL;μU �, respectively. Then
parametric P-Box is employed to express such parameter uncer-
tainty in system.

P-Boxes have been widely applied to quantify and represent
uncertainty in risk analysis [36,37,41]. This has also been used as a
tool to solve the statistical problem based on bounding probability
distributions. Let a non-negative random variable X to describe the
lifetime of a component, FU tð Þ and FL tð Þ are CDFs for random
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Fig. 2. (a) examples of P-Boxes; (b)
variable X on real number R, and F(t)¼P{Xrt}. Suppose F is a set
of non-decreasing functions which map R into [0, 1], where FL and
FU are the lower and upper bounds of F. Then a P-Box is defined by
a probability family which matches the constrains FL tð ÞrF tð ÞrFU

tð Þ and FAF. In reliability engineering, the survival probability can
reflect the performance of a component more intuitively. Analo-
gously, based on the definition of P-Box, an extended P-Box is
defined as

ℜ¼ R tð Þ; 8 tAR RL tð ÞrR tð ÞrRU tð Þ



 o

:
n

ð34Þ

where R(t)¼P{X4t}¼1�F(t). An extended P-Box representing by
R(t) is frequently unknown for its precise value but for the two
bounds RL and RU . For example, assume that random variable XWb

follows Weibull distribution with β¼2 and η¼[50, 70], and XLogn

follows lognormal distribution with σ¼0.25 and μ¼[5, 5.5]. Then
the Weibull and lognormal P-Boxes and extended P-Boxes are
constructed by taking the envelopes of those distributions. The P-
Boxes and extended P-Boxes are shown in Fig. 2(a) and
(b) respectively.

The area D between the low bound and upper bound of a
distribution can be used to quantify the uncertainty of system,
which can be expressed as

D¼
Z þ1

0
1�FL tð Þð Þdt�

Z þ1

0
1�FU tð Þ
� �

dt

¼
Z þ1

0
RU tð Þdt�

Z þ1

0
RL tð Þdt

¼ ETU�ETL: ð35Þ

This formula shows that the difference of the mean lifetime
(ETU�ETL) can be used to quantify the uncertainty of a component
or system. This provides an alternative optimization goal for
uncertainty minimization by using optimization algorithms.
Therefore, in this paper classical statistical method has been used
to obtain a confidence interval based on observational data
[40,42]. Then the unknown distribution parameters can be calcu-
lated within interval numbers by Section 4. This subsection pro-
vides a practical way to define extended P-Box for distributions
with parameter uncertainty.
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Fig. 4. The DFT model of example system.

Table 1
The number and description of the events in system DFT.

No. Event description No. Event description

S Complex electromechanical system task
failure

X3 Turbine failure

Y1 Control system failure X4 Reducer failure
Y2 Powertrain system failure X5 Pump failure
Y3 Power is not transmitted to the sub-

ordinate unit
X6 Valve #1 failure

Y4 Main work mode failure X7 Valve #2 failure
Y5 Emergency work mode failure X8 Main valve failure
X1 Control module #1 failure X9 Hydraulic system

failure
X2 Control module #2 failure
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5. Case study

Modern mechanical devices are characterized as multi-
functional complex EMSs, which are composed of hundreds or
thousands of components. The performance of components can
directly influence the operation efficiency of the whole product.
Due to the complexity introduced by the environmental impact,
lack of data and random interference, uncertainty and nonlinearity
characteristics always exist in complex systems [66].

5.1. Description of an electromechanical system

An illustrative complex dynamic EMS is used in this paper as
shown in Fig. 3. It is composed of control system, power supply
system, powertrain system and hydraulic system. Control system
includes two control modules connected in parallel, which are
used to perform the start-stop control of the main valve. It also
sends signal to hydraulic subsystem and controls the execution.
Powertrain system is a key subsystem, including a turbine, a
reducer and a pump. The power supply subsystem is composed of
two valves in the emergency work mode, but only one main valve
in main work mode. This functional relationship of this illustrative
system with the subsystems mentioned above is shown in Fig. 3.

To facilitate the method introduced and simplify the calcula-
tions, assumptions for the reliability modeling and lifetime pre-
diction of the system are made as follows:

) Component or subsystem has the same lifetime distribution and
the same lifetime with its corresponding assembly component.

) The components and units, whose failures are rarely happened
or their failures do not lead to system failure, are ignored.

5.2. Lifetime evaluation of sample electromechanical system

5.2.1. Dynamic fault tree modeling
In Fig. 3, the emergency work mode is regarded as a cold

backup of the main work mode, and the second module of the
control system is a hot backup for the first one. For the main work
mode, the main valve will be open by the hydraulic system after
receiving the signal from the control system. Therefore, in order to
ensure normal operation of the main valve, the hydraulic system
must be at the normal working condition before the main valve
starts to work. As a result, the failure of hydraulic system will force
the main valve to enter the failure state. Namely, there is a func-
tional dependency between the hydraulic system and the
main valve.

The dynamic logic gates, including CSP, HSP and FDEP, are
employed to describe the sequential rules and dynamic behavior
of the system. In this paper, based on failure mechanism analysis
of this system, the “complex EMS task failure” is chosen as a top
event for FT analysis. The DFT of this example system is built as
shown in Fig. 4. The meanings of the notations in Fig. 4 are listed
Main valveMain
work mode

Valve #1Emergency
work mode

Valve #2

Gas supply

Turbine

Reducer

Pump

Powertrain system

Actuator

AccessoryHydraulic system
module #2

System
success

Power supply system

module #1

Control system

Fig. 3. Function relationship of a complex electromechanical system.
in Table 1. Finally, by using a similar MCSQ generation method in
[60] for DFTs, four MPSQs are obtained for the example system,
including S1¼{X1, X3, X4, X5, X8, X9}, S2¼{X1, X3, X4, X5, X6, X7, X9},
S3¼{X2, X3, X4, X5, X8, X9} and S4¼{X2, X3, X4, X5, X6, X7, X9}.

Based on the mechanical and electrical properties of basic
components of the system, lifetime variables of the elementary
components are assumed to follow exponential distribution,
Weibull distribution and lognormal distribution respectively.
According to the accelerated life test and field data analysis, the
lifetime distribution and lifetime interval of different subsystems
and components of the example system are listed in Table 2.

The lower bound of the lifetime interval in Table 2 is the reli-
able lifetime tR of component when its reliability equals to 0.95
under the confidence level of 0.8, and the upper bound is the
counterpart of the lower bound when its reliability equals to 0.5.
The working frequency of the system is 70 times a year and 2 h
each time. According to the engineering experience, for a system
composed of several electronic components, its lifetime may not



Table 2
Life distribution and lifetime interval of basic units or subsystem.

No. Basic component Life distribution Lifetime Interval [tR¼0.95,
tR¼0.5]

X1 Control module #1 Exp (λ1); Exp (λ2) –

X2 Control module #2 Wb (β1, η1); Wb (β2, η2) [1841, 4200]
X3 Turbine Wb (β3, η3) [4733.4, 7000]
X4 Reducer Wb (β4, η4) [2100, 7000]
X5 Pump Wb (β5, η5) [4200, 5600]
X6 Valve #1 Logn (μ6, σ6) [1400, 2100]
X7 Valve #2 Logn (μ7, σ7) [1400, 2100]
X8 Main valve Logn (μ8, σ8) [4576.6, 5600]
X9 Hydraulic system Logn (μ9, σ9) [4200, 4900]

Table 3
Lifetime COV and distribution parameters of basic units.

No. COV Parameters No. COV Parameters

X1 1 λ1¼λ2¼1.7e-4 X6 0.2000 μ6¼[7.2442, 7.5700];
σ6¼0.1980

X2 0.3905 β1¼β2¼2.769;
η1¼η2¼[4794.4, 5381.5]

X7 0.2000 μ7¼[7.2442, 7.5700];
σ7¼0.1980

X3 0.1932 β3¼6.02; η3¼[7439.4,
7752.6]

X8 0.1006 μ8¼[8.4287, 8.5937];
σ8¼ 0.1003

X4 0.5385 β4¼1.935; η4¼[8459.8,
9746.6]

X9 0.0769 μ9¼[8.3428, 8.4692];
σ9¼0.0768

X5 0.1429 β5¼8.33; η5¼[5851.9,
5999.3]

X8

X5X4X3

Y2
X9 Y1

S

Y3

Y5

X6 X7

Y4

X1 X2

Fig. 5. The BN model of the example system.
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follow exponential distribution. Therefore, control modules are
given two contrastive assumptions that lifetime of modules obey
exponential distribution or two-parameter Weibull distribution.

According to Eqs. (10)–(20) and the data listed in Table 2, the
COV of each component can be calculated. Furthermore, the
intervals of lifetime distribution parameters can be calculated and
listed in Table 3.

5.2.2. Lifetime evaluation of sample EMS based on BN
According to the system structure and the DFT in Fig. 4, a BN

model is built for this example system as shown in Fig. 5.
“AgenaRisk” is a software tool which can carry out risk and

reliability analysis using BN [48–50]. BN has the advantages for
modeling and solving real-world problems, which has been widely
used in risk assessment and decision analysis [67]. The AgenaRisk
software can perform the BN modeling and information integra-
tion for uncertainty related risk and reliability analysis for real
engineering complex systems [68]. In this paper, AgenaRisk soft-
ware is used to carry out BN modeling and data analysis of the
example system in Fig. 3. Fig. 6 shows the BN model that is built in
“AgenaRisk. 6.2, Revision 2077” and the lifetime distribution and
the mean lifetime of each component and subsystem are shown in
Table 4.

Table 4 shows that, when X1 and X2 follow exponential dis-
tributions, the interval of system mean lifetime is [3411.0, 3761.3],
and when X1 and X2 follow two-parameter Weibull distributions,
the interval of system mean lifetime is [3649.1, 4100.8]. From Fig. 6
we can see that the lower bound of system reliability at time
t¼3000 h is 0.81528 when control modules lifetime follows
Weibull distributions. By resetting the parameters of the nodes in
Fig. 6, the system reliability can be computed by AgenaRisk soft-
ware easily. Therefore, the system reliability is [0.8153, 0.8665]
while control module obeys Weibull distribution and [0.7267,
0.7525] for exponential distribution. Taking the upper percentile
of 0.75 as the service lifetime bound of system, the service lifetime
interval of the example system can be obtained as [4215.3, 4743.1]
under the condition that control module follows Weibull dis-
tributions, and as [4180.6, 4697.5] when control module follows
exponential distributions.

5.2.3. Lifetime evaluation of sample repairable EMS based on MC
simulation

In this section the MC simulation-based method is used to
perform the quantitative analysis of the DFT model based on the
structure function of sample system by synthesizing the failure
mechanism of repairable system. After the sequentialization of the
MPSs, the system MPSs are obtained, and S1¼{X1, X3, X4, X5, X8,
X9}, S2¼{X1, X3, X4, X5, X6, X7, X9}, S3¼{X2, X3, X4, X5, X8, X9} and
S4¼{X2, X3, X4, X5, X6, X7, X9}. According to Eq. (24), the system
success event S of sample system is:

S¼
X4
i ¼ 1

Si ¼ S1þS2þS3þS4 ¼
Xm
i ¼ 1

∏
Xj A Si

Xj

 !

¼ X1X3X4X5X8X9ð Þþ X1X3X4X5X6X7X9ð Þ
þ X2X3X4X5X8X9ð Þþ X2X3X4X5X6X7X9ð Þ: ð36Þ
The Matlab numerical analysis software is employed to gen-

erate the random number with the sampling frequency
M¼100,000. Based on the MC simulation method and the simu-
lation process in Section 3.2, the mean lifetime of the sample
system is calculated and expressed as an interval number [3412.7,
3779.0] when the lifetime of control modules follows exponential
distributions. And when control modules obey Weibull distribu-
tion, the mean lifetime of sample system has been obtained as
[3616.8, 4084.8]. The results are based on an assumption that the
sample system is non-repairable. But in engineering, when con-
sidering complexity, economy and maintainability of large-scale
complex system, some of the components are always designed as
replaceable components. Therefore, in the following part, we have
investigated the effect of the replacement of components to the
mean lifetime and service lifetime of the whole system.

The lifetime distribution and distribution parameters of each
basic component are known from former subsection. Assume that
the valve #1 and #2 are replaceable components. From Table 2, we
know that the lifetime of valves falls in [1400, 2100](h), so the
replacement time is determined as 1400 h. The control modules
are assumed to be repairable and replacement time Tz is set as
2100 h. To compare and quantify the impact of the replacement of
different components to the lifetime of whole system, the lifetime



Fig. 6. BN modeling by AgenaRisk software (X1, X2 follows Weibull distribution).

Table 4
The mean life intervals of components and subsystems.

No. X1, X2�Wb X1, X2�Exp. No. X1, X2�Wb X1, X2�Exp.

X1, X2 [4268.5,
4791.3]

5912.8 X9 [4212.3,
4780.0]

[4212.3,
4780.0]

X3 [6902.0,
7192.4]

[6902.0,
7192.4]

Y1 [5213.3,
5850.6]

[8855.8,
8855.8]

X4 [7509.5,
8648.6]

[7509.5,
8648.6]

Y2 [4436.6,
4868.7]

[4436.6,
4868.7]

X5 [5521.1,
5660.2]

[5521.1,
5660.2]

Y3 [5401.2,
6483.8]

[5401.2,
6483.8]

X6 [1428.0,
1978.4]

[1428.0,
1978.4]

Y4 [4132.3,
4726.2]

[4132.3,
4726.2]

X7 [1428.0,
1978.4]

[1428.0,
1978.4]

Y5 [1269.0,
1757.7]

[1269.0,
1757.7]

X8 [4599.9,
5424.9]

[4599.9,
5424.9]

S [3649.1,
4100.8]

[3411.0, 3761.3]

Table 5
Mean life of sample system with different replace cases.

Mean life BN method MC method
Lifetime
distribution

Non-repairable Repairable (replacement time Tz)

– – X1, X2 X6, X7 X1, X2, X6,
X7

X1, X2

Tz¼2100
(h)

Tz¼1400
(h)

Tz¼2100/
1400 (h)

Exp [3411.0,
3761.3]

[3412.7,
3779.0]

[3761.6,
4259.3]

[3409.3,
3775.8]

[3765.3,
4257.3]

Wb [3649.1,
4100.8]

[3616.8,
4084.8]

[3765.5,
4257.3]

[3618.3,
4090.7]

[3762.7,
4260.7]
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simulations of system are divided into the following cases: 1) only
the control modules are replaceable with Tz¼2100 h, 2) only
valves #1 and #2 are replaceable for replacement time Tz¼1400 h,
and 3) both control modules and valves are replaceable. Finally,
the simulation results are tabulated in Table 5.
As shown in Table 5, when system is non-repairable, the mean
lifetime of system evaluated by BN method almost perfectly
matches the MC simulation method results. So the mean lifetime
of system is about [3400, 3780] when control modules’ lifetime
follows exponential distribution, and is about [3600, 4100] when
control modules' lifetime follows Weibull distribution. When
considering the reparability of system, the replacement of com-
ponents X1 and X2 will makes the mean lifetime of system increase
to about [3760, 4260], which means, to some extent the replace-
ment of control modules can improve the lifetime and the relia-
bility of the system. But the replacement of valves X6 and X7

almost has no effect on the lifetime of system. This is because
valves #1 and #2 are two cold standby of the main valve, only
when the main valve fails those two backup valves can be active.
Therefore, when the lifetime of the main valve is long enough, the
replacement of valves will rarely affect the lifetime of the entire
system, even though the lifetime of valves is short.

We can now infer that the importance of control modules X1

and X2 are larger than valves X6 and X7 in the whole system.
Because of the significant difference of system mean lifetime when
the control module is assumed to follow different distributions,
and through literature research we know that a system which is
composed of some exponential distribution components, the
lifetime of the system may not obeys exponential distribution. So
in the following parts, the assumption that lifetime of control
model follows Weibull distribution will be more consistent with
engineering practice.
5.3. Reliability analysis and distribution validation of example EMS

5.3.1. Reliability analysis of example system
According to Section 5.2, there are 4 MPSs in the sample sys-

tem, the occurrence probability of system success event at mission
time t0 is

P T4t0ð Þ ¼ RS t0ð Þ ¼ PðS1 [ S2 [ S3 [ S4Þ
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¼
X4
i ¼ 1

P Sið Þ�
X4
i¼ 1
ia j

P SiSj
� �þ X4

i¼ 1
ia jak

P SiSjSk
� ��P S1S2S3S4ð Þ

¼ P S1ð ÞþP S2ð ÞþP S3ð ÞþP S4ð ÞþP S2S3S4ð Þ
� P S1S2ð ÞþP S1S3ð ÞþP S2S4ð ÞþP S3S4ð Þ½ �

¼ 2 P S1ð ÞþP S2ð Þ½ �� 2P S1S2ð ÞþP S1S3ð ÞþP S2S4ð Þ½ �þP S2S3S4ð Þ
¼ 2Pðx1ÞPðx3ÞPðx4ÞPðx5Þ P x8ð ÞP x9ð ÞþP x6ð ÞP x7ð ÞP x9ð Þ½ �

�Pðx1ÞPðx3ÞPðx4ÞPðx5Þ 2P x6ð ÞP x7ð ÞP x8ð ÞP x9ð Þ½
þPðx2ÞP x8ð ÞP x9ð ÞþPðx2ÞP x6ð ÞP x7ð ÞP x9ð Þ�
þPðx1ÞPðx2ÞPðx3ÞPðx4ÞPðx5ÞP x6ð ÞP x7ð ÞP x8ð ÞP x9ð Þ; ð37Þ

where P xið Þ ¼ P ti4t0ð Þ ¼ R xið Þ, which is the reliability of compo-
nent xi at time t0. The reliable lifetime of exponential distribution,
Weibull distribution and lognormal distribution at time t0 can be
calculated by the following equations

Rk
Exp t0ð Þ ¼ P T4t0ð Þ ¼ exp �λkt0

	 

; k¼ 1;⋯;K1; ð38Þ

Rk
Wb t0ð Þ ¼ P T4t0ð Þ ¼ exp � t0

ηk

� �βk
( )

; k¼ 1;⋯;K2; ð39Þ

Rk
Logn t0ð Þ ¼ P T4t0ð Þ ¼Φ � ln t0�μk

σk

� �
; k¼ 1;⋯;K3; ð40Þ

where K1, K2 and K3 are the numbers of component whose lifetime
distribution follows exponential distribution, Weibull distribution
and lognormal distribution respectively. To compare the effect of
repair and maintenance on system reliability, the extended P-
Boxes of the sample EMS are gotten based on the lifetime dis-
tributions and parameters in Tables 2 and 3, and are shown as
Figs. 7 and 8. Then the extended P-Boxes of each component with
different lifetime distributions are shown in Figs. 9 and 10.

From Fig. 7, when the lifetime of control modules (X1 and X2)
are Weibull distributions, the system reliability interval is [0.8159,
0.8668] at service time t¼3000 h, which is nearly the same as the
result obtained by BN-based method [0.8153, 0.8665]. Similarly,
considering the reparability of components, the system reliability
increases to [0.8661, 0.8962]. When X1 and X2 obey exponential
distributions, the system extended P-Boxes are shown in Fig. 8.
The system reliability interval at time t¼3000 h almost equals to
the result by BN-based method, which is [0.7267, 0.7525]. The
system reliability will be raised to [0.8484, 0.8779] with
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Fig. 7. System extended P-Boxes (X1 and X2 follows Wb distribution).
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Fig. 9. Components extended P-Boxes (X1–X5).
consideration of components repair. After analyzing the curve
trend of the reliability bounds of the extended P-Boxes in
Figs. 7 and 8, we can see that there is a hopping of system relia-
bility at each replacement time, which means that after each
replacement of components, system reliability has been improved
to a certain extent.

5.3.2. Lifetime distribution analysis of example system
The system lifetime and reliability extended P-Boxes have been

evaluated. As introduced in the former sections, the reliability
assessment of system contains not only the qualitative analysis,
the lifetime evaluation and system reliability evaluation, as well as
the distribution validation and failure rate function investigation
are also included. To investigate the reliability function and the
lifetime distribution of sample system, the distribution parameters
should be estimated first. Then, the probability density function
and failure rate function can be determined.
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Assume that the system lifetime follows the Weibull distribu-
tion Wb(βs, ηs). In this section, the least square method is
employed to estimate the lifetime distribution of the sample sys-
tem [60].

For a linear equation,

y¼ aþbx: ð41Þ

Based on the least square method, the estimated value of
parameters a and b are given by

â¼
n
Pn
i ¼ 1

xiyi�
Pn
i ¼ 1

xi
Pn
i ¼ 1

yi

n
Pn
i ¼ 1

xi2�
Pn
i ¼ 1

xi

 !2 ; ð42Þ

b̂¼ 1
n

Xn
i ¼ 1

yi�
â
n

Xn
i ¼ 1

xi: ð43Þ

For Weibull distribution, the following equation can be
obtained through linear transformation,

ln ln
1

R tð Þ ¼ �β ln ηþβ ln t: ð44Þ

Using the form of Eq. (41) to rewrite the Eq. (44), let y¼ ln ln
1=R tð Þ� �

and x¼ ln t, the parameters of Eq. (41) will be a¼ �β ln η
and b¼ β. It can be seen that the key point of parameter estima-
tion of Weibull distribution is the calculation of xi and yi, and the
challenge is how to compute the reliability R tð Þ. In this paper, the
system reliability with consideration of component repair at dif-
ferent mission time has been calculated and shown in Fig. 7. Above
all, the parameter estimation of Weibull distribution by using least
square method includes the following steps.

) According to the system reliability data R(ti) and the corre-
sponding reliable lifetime ti by MC simulation, the variables xi
and yi are calculated, where xi ¼ ln ti and yi ¼ ln ln 1=R tið Þ� �

.
) Calculating the mean value of data as x¼ 1=n

� �Pn
i ¼ 1 xi and

y¼ 1=n
� �Pn

i ¼ 1 yi.
) Let lxx ¼

Pn
i ¼ 1 xi�xð Þ2 and lxy ¼

Pn
i ¼ 1 xi�xð Þ yi�y

� �
, then lxx

and lxy can be calculated.
) Then, the parameters of Weibull distribution can be estimated
as β̂¼ lxy=lxx and η̂¼ exp � y� lxy=lxx

� �
x

� �
= lxy=lxx
� �� �

. The esti-
mated probability density function and failure rate function can
be obtained by

f̂ tð Þ ¼ β̂
η̂

t
η̂

� �β̂�1

exp � t
η̂

� �
β̂

� �
; tZ0; ð45Þ

R̂ tð Þ ¼ exp � t
η̂

� �
β̂

� �
; tZ0; ð46Þ

λ̂ tð Þ ¼ β̂
η̂

t
η̂

� �β̂�1

; tZ0: ð47Þ

Using the former method and considering the system repair,
the lifetime distribution parameters of sample system can be
estimated. Then the estimated value of the shape and scale para-
meters are β̂sA 2:8773;3:0669½ � and η̂sA 3597:03;4426:29½ �
respectively. The Weibull extended P-Box can be constructed by
taking the envelope of four two-parameter Weibull distributions i.e.
Wb(2.8773, 3597.03), Wb(2.8773, 4426.29), Wb(3.0669, 3597.03)
and Wb(3.0669, 4426.29), which makes the system extended P-Box
as shown in Fig. 11. The failure rate of system at mission time t can
also be calculated by Eq. (47) and shown in Fig. 12.
5.3.3. Importance analysis
When the control modules follow Weibull distribution, based

on Eq. (29), the probability importance degrees of the components
at mission time t¼4200 h are calculated and given in Table 6
when the replacement of components are ignored. The impor-
tance of each component or subsystem versus mission time t is
shown in Fig. 13. When the sample system is repairable, the
probability importance degrees of components at t¼4200 h are
listed in Table 7 and the curve of importance versus time t is
shown in Fig. 14.

The NSG ranking method [63–65] is used to sort the interval
importance in Tables 6 and 7. According to the possibility-based
NSG ranking method in Section 3.3, the possibility matrices P1 and
P2 for non-repairable and repairable scenarios can both be
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Table 6
Probability importance of components (non-repairable).

No. [I]g(i) No. [I]g(i) No. [I]g(i)

X1 [0.1412, 0.2844] X4 [0.2740, 0.7379] X7 0
X2 [0.1412, 0.2844] X5 [0.2255, 0.6384] X8 [0.2633, 0.6103]
X3 [0.2186, 0.6218] X6 0 X9 [0.4236, 0.6384]
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Fig. 13. Components importance when system is non-repairable.

Table 7
Probability importance of components (repairable).

No. [I]g(i) No. [I]g(i) No. [I]g(i)

X1 0 X4 [0.4544, 0.8802] X7 [0.0045, 0.0688]
X2 0 X5 [0.3740, 0.7615] X8 0
X3 [0.3625, 0.7417] X6 [0.0045, 0.0688] X9 [0.7025, 0.7615]
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Fig. 14. Components importance when system is repairable.
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calculated by Eqs. (30)–(33) and are given as

P1 ¼

0:5000 0:5000 0:1204 0:0171 0:1059 1:0000 1:0000 0:0430 0
0:5000 0:5000 0:1204 0:0171 0:1059 1:0000 1:0000 0:0430 0
0:8796 0:8796 0:5000 0:4011 0:4856 1:0000 1:0000 0:4779 0:3207
0:9829 0:9829 0:5989 0:5000 0:5844 1:0000 1:0000 0:5853 0:4631
0:8941 0:8941 0:5144 0:4156 0:5000 1:0000 1:0000 0:4936 0:3422

0 0 0 0 0 1:0000 1:0000 0 0
0 0 0 0 0 1:0000 1:0000 0 0

0:9570 0:9570 0:5221 0:4147 0:5064 1:0000 1:0000 0:5000 0:3323
1:0000 1:0000 0:6793 0:5369 0:6578 1:0000 1:0000 0:6677 0:5000

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð48Þ

P2 ¼

1:0000 1:0000 0 0 0 0 0 1:0000 0
1:0000 1:0000 0 0 0 0 0 1:0000 0
1:0000 1:0000 0:5000 0:3569 0:4796 1:0000 1:0000 1:0000 0:0895
1:0000 1:0000 0:6431 0:5000 0:6224 1:0000 1:0000 1:0000 0:3665
1:0000 1:0000 0:5204 0:3776 0:5000 1:0000 1:0000 1:0000 0:1321
1:0000 1:0000 0 0 0 0:5000 0:5000 1:0000 0
1:0000 1:0000 0 0 0 0:5000 0:5000 1:0000 0
1:0000 1:0000 0 0 0 0 0 1:0000 0
1:0000 1:0000 0:9105 0:6335 0:8679 1:0000 1:0000 1:0000 0:5000

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð49Þ
Then the ranking vectors ω1 and ω2 of matrices P1 and P2 can

be computed as,

ω1 ¼ ω1 ω2 ⋯ ωn½ �T
¼ 0:0943 0:0943 0:1312 0:1416 0:1327 0:0764½

0:0764 0:1346 0:1464�T; ð50Þ

ω2 ¼ ω1 ω2 ⋯ ωn½ �T
¼ 0:0903 0:0903 0:1379 0:1477 0:1393 0:1042½

0:1042 0:0903 0:1585�T: ð51Þ
According to matrices P1, P2 and ranking vectors ω1 and ω2,

the ranking result of the components importance [I]g(i) for non-
repairable scenario can be represented as

I½ �g1 X9ð ÞZ I½ �g1 X4ð ÞZ I½ �g1 X8ð ÞZ I½ �g1 X5ð ÞZ I½ �g1 X3ð Þ
Z I½ �g1 X1ð ÞZ I½ �g1 X2ð ÞZ I½ �g1 X6ð ÞZ I½ �g1 X7ð Þ:

Denote the symbol “g” as the optimal order relation of two
interval numbers, then the corresponding ranking result will be

I½ �g1 X9ð Þ g
0:5369

I½ �g1 X4ð Þ g
0:5853

I½ �g1 X8ð Þ g
0:5064

I½ �g1 X5ð Þ g
0:5144

I½ �g1 X3ð Þ
g

0:8796
I½ �g1 X1ð Þ g

0:5000
I½ �g1 X2ð Þ g

1:0000
I½ �g1 X6ð Þ g

1:0000
I½ �g1 X7ð Þ:
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When the system is repairable, the importance ranking result is

I½ �g2 X9ð Þ g
0:6335

I½ �g2 X4ð Þ g
0:6224

I½ �g2 X5ð Þ g
0:5204

I½ �g2 X3ð Þ g
1:0000

I½ �g2 X6ð Þ
g

0:5000
I½ �g2 X7ð Þ g

1:0000
I½ �g2 X1ð Þ g

1:0000
I½ �g2 X2ð Þ g

1:0000
I½ �g2 X8ð Þ:

As shown in Fig. 13, the probability importance of valves stays
at a low level. This is because they are cold standby of the main
valve, which can only be active when the main valve fails.. So the
valves #1 and #2 both have a lower importance in the entire
system, and the change of their reliability will have also no
obvious influence on the reliability of whole system. For the
importance of main valve, it has a holding phase at first stage and
then it gradually increases and followed by a decreasing process.
The existence of the standby components makes a relative low
importance of the whole system. But when the reliability of the
spare components gradually reduced due to the storage or some
other impact factors, the main valve will be assigned a heavier
mission. This makes its reliability has an increase process.

From Fig. 14, we can see that when the replacement of control
modules and the valves are considered, each replacement of
components will lead to an adjustment of the importance of all
system components. The importance of the repairable components
will decrease after each replacement, and an increasing adjust-
ment process will occur in the importance of other non-
replacement components of the entire system. From Figs. 7 and
8, comparing the system reliability, when system is non-repairable
and when the components replacement are considered, it is
obviously that the regular maintenance or replacement of the
short-lived components has significant promotion on system
lifetime and system reliability.
6. Conclusion

For the complex systems with limited system-level test data,
via comprehensive analysis and processing of test data, field data
and design data, the lifetime of system components can be finally
represented as bounded closed intervals. Using the COV method,
the distribution parameters of basic component lifetime variables
are evaluated. It is obviously that parameter uncertainty exists in
the complex system, and then the parameters are treated as
interval numbers. In view of the epistemic uncertainty caused by
the lack of adequate and precise data, based on the definition of
P-Box, a similar consideration has been used to define a new
concept called extended P-Box to convey the present of epistemic
uncertainty in system. It has shown that the extended P-Box can
reflect the relevant reliability information more intuitively than P-
Box.

The dynamic logic gates are used to describe the dynamic
failure behavior of complex EMS. Then a DFT model is built to
characterize the failure logic relationships among system compo-
nents of the complex system. After the definition of lifetime logic
relationship for commonly used static and dynamic logic gates, the
DFT are mapped into an equivalent BN. By utilizing AgenaRisk
software to facilitate the calculation of BN, the mean lifetime and
system reliability have been calculated and expressed as interval
numbers. For repairable system with components replacement,
the MC simulation method is utilized to compute the DFT model
by updating the pseudo-failure time of replaceable components.
The comparative studies show that the BN-based method tends to
be easier to be applied in engineering practices. The MC
simulation-based method is more accurate and the repair cases
can be considered. The reliability analysis of complex system
illustrates that the system reliability can be improved to a certain
extent by making reasonable replacement plans for basic
components.
Finally, under the assumption that the system lifetime variable
is a two-parameter Weibull distribution, the distribution para-
meters are estimated by least square method, and the system
failure rate and probability density function are also calculated.
The probability importance analysis of system is utilized to find
out weak points of the entire system and to provide guidance for
system design, fault diagnosis and maintenance planning. This
paper provides an effective and flexible integrated method for
reliability assessment of complex EMS, which can be easily
implemented in engineering practices. At this point, we have dealt
with the reliability assessment of complex EMS; the design
improvement and reliability growth for such systems is an avenue
for future work.
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