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Abstract 
 
The inverse Gaussian process is recently introduced as an attractive and flexible stochastic process for degradation modeling. This pro-

cess has been demonstrated as a valuable complement for models that are developed on the basis of the Wiener and gamma processes. 
We investigate the optimal design of the degradation tests on the basis of the inverse Gaussian process. In addition to an optimal design 
with pre-estimated planning values of model parameters, we also address the issue of uncertainty in the planning values by using the 
Bayesian method. An average pre-posterior variance of reliability is used as the optimization criterion. A trade-off between sample size 
and number of degradation observations is investigated in the degradation test planning. The effects of priors on the optimal designs and 
on the value of prior information are also investigated and quantified. The degradation test planning of a GaAs Laser device is performed 
to demonstrate the proposed method.  
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1. Introduction 

Modern products and engineering systems are known for 
their high reliability and long service life. The manufacturers 
of modern products and engineering systems are receiving 
increasing pressure from the markets as customers/users in-
creasingly focus on product reliability. Reliability tests based 
on time-to-failure observations are often hindered by observed 
failures [1, 2]. Classical pass-fail and lifetime tests obtain in-
sufficient reliability data to generate a precise reliability as-
sessment. Although these products may not fail in many situa-
tions, their characteristics degrade over time [3]. Given that 
the deterioration of the service life indicator of a product can 
be reasonably related to the failure of the product, the reliabil-
ity of a product can be assessed by degradation analysis [4]. 
Service life indicators include oil debris for lubrication [5], 
crack length for gears [6], and fatigue damage for structures 
[7]. A degradation test is generally performed to observe the 
deterioration of the service life indicators of a product. The 
optimal design of the degradation test aims to find an optimal 
test plan that generates degradation data in a cost-effective 
manner [8]. By determining the optimum test sample, interval 

of observation time, and number of observations, the degrada-
tion test can generate a precise reliability assessment under 
limited test resources and time. Meeker and Escobar [9] de-
veloped a comprehensive framework for reliability assessment 
via degradation analysis. The introduction of this framework 
was followed by the publication of several studies on degrada-
tion modeling and analysis, such as those of Tangkuman and 
Yang [10], Son [11], Wang et al. [12], and Ye et al. [13]. 
Along with the expansion of degradation modeling, the degra-
dation test has been demonstrated as a significant toolkit for 
reliability assessment, particularly for assessments that are 
subjected to limited sample sizes and test times. 

To facilitate the design of degradation test, a lot of works 
that consider different degradation test perspectives have been 
published [2]. Tseng and Yu [8] investigated the stopping time 
for a degradation test by using an asymptotically equivalent 
MTTF estimator. Yu and Tseng [14] extended this work by 
simultaneously determining the sample size, inspection fre-
quency, and termination time for a degradation test. Shi et al. 
[15] introduced a method for the optimal test planning of an 
accelerated destructive degradation test (ADDT). A general 
equivalence theorem was used to verify the optimality of the 
plans. Shi and Meeker [16] further investigated the ADDT test 
planning by using the Bayesian method. A large-sample ap-
proximation method was used to simplify the calculation of 
the Bayesian criterion. These works were conducted on the 
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basis of the assumption that the degradation process followed 
a degradation path model. The degradation test planning for 
the degradation process described by the Wiener process has 
been recently investigated. Tang et al. [17] investigated the 
optimal planning of the step-stress accelerated degradation test 
(SSADT). The Wiener process was used to model the degra-
dation process and to overcome the limitation of the determi-
nistic degradation process model. By simultaneously deter-
mining the sample size, measurement frequency, and termina-
tion time, Liao and Tseng [18] proposed a method for the 
optimal designing of SSADT by using a Wiener process deg-
radation model. Lim and Yum [19] recently investigated the 
optimal design of the accelerated degradation test (ADT) by 
determining the test stress levels and the proportion of test 
units allocated in the stress levels of the Weiner process deg-
radation model.  

The Weiner process is suitable for situations wherein the 
degradation process of a product is not strictly increasing. 
However, the degradation processes of products strictly in-
crease in several situations, such as the crack length of gears 
and the fatigue damage of structures. Therefore, the optimal 
degradation test design for these situations must be investigated. 
Unfortunately, the optimal degradation test design for situa-
tions with a monotically increasing degradation process has 
been investigated (e.g., Tseng et al. [20] and Tsai et al. [21]). 
Tseng et al. [20] introduced an SSADT model by assuming 
that the degradation path followed a gamma process. They 
further proposed a method for the optimal design of SSADT. 
Tsai et al. [21] proposed an optimal degradation test design 
based on a gamma process with random effects and investi-
gated the effect of model misspecification. Both of these stud-
ies were conducted on the basis of the assumption that the deg-
radation process followed a gamma process. The inverse Gaus-
sian process (IG) was recently introduced by Wang and Xu 
[22] and Ye and Chen [23] as an attractive and flexible sto-
chastic process for modeling degradation processes with mono-
tonically increasing patterns. The degradation models based on 
the IG process outperforms frequently used models based on 
the gamma process. Moreover, Tsai et al. [21] demonstrated 
that model misspecification can considerably affect the optimal 
degradation test design and lead to poor reliability assessment. 
Therefore, an optimal degradation test design must be devel-
oped by considering the situation wherein the IG process is 
more suitable than the Wiener and gamma processes for degra-
dation modeling. Examples of such situations include the GaAs 
laser degradation data investigated in this paper and the fatigue 
crack data introduced by Wu and Ni [24]; the fatigue crack 
data have been investigated further by Ref. [25] by using the 
IG process. Accordingly, this study focuses on degradation test 
planning based on the IG process. This study also aims to 
complement the optimal degradation test planning where the 
Weiner and gamma processes are insufficient for degradation 
modeling. 

In addition to the abovementioned degradation model, the 
uncertainty within the planning values of the model parame-

ters presents another critical issue in degradation test planning. 
Model parameters that are pre-estimated from historical data 
or preliminary test results are commonly used, and sensitivity 
analysis is performed to determine the uncertainty of these 
predefined model parameters. This method may lead to sev-
eral iterations of the optimal procedure and an unwanted vari-
ance of the final optimal design [26]. The Bayesian method, 
wherein the model parameters are treated as random variables, 
presents a natural and alternative way for testing uncertainty. 
The uncertainty in the model parameters is expressed by a 
joint prior distribution. The optimal degradation test design is 
formulized as an optimization problem under a constructed 
Bayesian framework. The Bayesian method has been proven 
effective by Zhang and Meeker [26] and Yuan et al. [27] for 
the optimal designing of reliability tests. However, the Bayes-
ian optimal degradation test based on the IG process has been 
insufficiently investigated. The effect of prior information on 
degradation analysis has also been proven significant by 
Wang and Zhang [27] and Liao and Tian [29]. Liu and Tang 
[30] and Shi and Meeker [31] emphasized the importance of 
incorporating prior information for optimal degradation test 
planning by using the Bayesian method. However, quantifying 
the value of such information must be investigated further, 
particularly for test designs subjected to limited test resources. 
Classical examples include the degradation testing of secon-
dary batteries in spacecraft investigated by Jin et al. [32] and 
the manufacturing equipment investigated by Kharoufeh et al. 
[33]. Accordingly, the Bayesian optimal degradation test 
based on the IG process must be investigated. The Bayesian 
optimal designs for non-informative and informative priors 
must be compared with each other, and the incorporation of 
prior information for the degradation test must be investigated 
further.  

Given these issues, this study proposes a Bayesian method 
for designing an optimal degradation test design on the basis 
of the IG process. Implementing the Bayesian optimal design 
method, comparing different prior distributions, and quantify-
ing the value of prior information are all investigated by using 
an illustrative example. An average pre-posterior variance of 
reliability is used as the optimization criterion. A trade-off 
between sample size and number of degradation observations 
under limited test resource is studied. A step-by-step stochas-
tic optimization procedure based on large-sample approxima-
tion and parametric surface smoothing techniques is presented 
to solve the Bayesian optimal design problem.  

The rest of the paper is organized as follows. Sec. 2 de-
scribes the degradation model based on the IG process. Sec. 2 
presents the basic assumptions for the construction of degrada-
tion test planning. Sec. 3 describes the Bayesian optimal deg-
radation test design and discusses the deduction of the preci-
sion criterion, the derivation of prior information, and the so-
lution for the Bayesian optimal design problem. Sec. 4 illus-
trates the proposed Bayesian optimal degradation test design 
via a classical example. Sec. 5 concludes the paper and high-
lights potential topics for future works. 
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2. Model assumption 

Let { ( ); 0}Y t t >  denote the degradation process of a prod-
uct with (0) 0Y = . We assume that the degradation process 
follows an IG process with mean function ( )tL  and scale 
parameters h . ( )Y t  has independent increments, with each 
increment following an IG distribution as presented in Refs. 
[22] and [23]. 

 

( ) ( ) ( )( )2
~ IG ,Y t t thD DL éDL ùë û , (1) 

 
where ( ) ( ) ( )Y t Y t t Y tD = + D - , ( ) ( ) ( )t t t tDL = L + D - L , 
and 2IG( ( ), [ ( )] )t thDL DL  denote an IG distribution with 
mean ( )tDL  and variance ( )t hDL . 

We assume that ( ) , 0qt t qL = >  with (0) 0L = , as shown 
in Ye and Chen [23]. The degradation process is then modeled 
as 2( ) ~ IG( ( ), [ ( )] )Y t t thL L . A physical interpretation is as-
cribed to the mean function ( ) qt tL = , that is, the mean of the 
degradation process is described by a monotonically non-
decreasing function. In real applications, a physical model can 
be incorporated through a proper choice of the degradation 
mean function ( )tL . Moreover, prior information can be 
integrated through a well-defined derivation of prior distribu-
tions for the parameters in this degradation mean function. 

The product fails when its degradation path ( )Y t  reaches a 
predefined threshold level YD. Therefore, the lifetime T  of a 
product is defined as follows: 

 
( ){ }inf | DT t Y t Y= ³ .  (2) 

 
On the basis of the monotonic increments of the IG process, 

product reliability is defined as follows [22]: 
 

( ) ( ) ( )( )

( ) ( ) ( )

| , | , | ,

exp 2

D

q q q
D D

D D

R t q P T t q P Y t Y q

Y t t Y t
Y Y

h h h

h hh

= > = <

é ù é ù
= F - + F - +ê ú ê ú

ê ú ê úë û ë û

. (3) 

 
The reliability of a product over a predefined mission time 

is often used to assess the probability of a product to fulfill a 
mission successfully. The decision-making process must con-
sider the usage of the product in real engineering practice. 
Reliability is also used as an important measure for manufac-
turers to determine the warranty period of a product [34]. We 
use the variance of product reliability for a predefined mission 
time as a precision criterion. Let { , }q h=θ  denote the vector 
of model parameters. On the basis of Eq. (3), the reliability for 
a predefined mission time tm is obtained as Rm(θ) = R(tm |θ). 
Let Var(Rm (θ)) denote the variance of product reliability for a 
predefined mission time. An efficient degradation test must be 
designed in such a way that the product reliability for a spe-
cific mission time can be estimated precisely.  

Suppose that n samples are randomly selected for the deg-

radation test. The degradation observations of each sample are 
measured every f units of time. The maximum number of ob-
servations for each sample is denoted as m. Let yi (tj) denote 
the degradation observations of the ith sample at observation 
time point tj, where tj = f • j with j = 0 ,…, m and t0 = 0. This 
paper pre-defines the measurement frequency f, which is gen-
erally determined according to the characteristics of the test 
equipment that performs the degradation test. The optimal test 
plan specifies the sample size n and the measurement number 
m. For a given test plan D = {n, m} with the degradation ob-
servations 1{ ( )}m

i i j jy t ==Y  where i = 1 ,…, n, the joint poste-
rior distribution of the model parameters can be obtained as 
f(θ| Y, D) by using the Bayesian method. The variance of 
product reliability for a predefined mission time is obtained as 
Var(Rm (θ)| Y, D). By averaging Var(Rm (θ)| Y, D) over the 
degradation observations Y, the average value of the variance 
of product reliability for a predefined mission time is obtained 
as AVar(Rm (θ)| D). The value of such variance is used as the 
optimization criterion in this paper to describe the relationship 
between the test plan and estimation precision. Sec. 3 presents 
additional details on the derivation and calculation of these 
parameters. The cost of the test is determined by the test plan 
D = {n, m}. The total cost comprises the costs of samples and 
measurements and is computed as follows: 

 
( ), sa meTC n m C n C nm= + , (4) 

 
where Csa is the unit cost of each test sample and Cme is the 
unit cost of each degradation observation. 

The optimal design of degradation tests is formulated as the 
following optimization problem:  

Minimize 
( )( )AVar , | ,mR q n mh  

 
subject to 

( ), D

L U

L U

TC n m C
N n N
M m M

£

£ £

£ £
, 

 
where AVar(Rm(q, η)|n, m) denotes the average value of the 
variance of product reliability for a specific mission time, CD 
denotes the predefined budget for performing the degradation 
test, (NL, NU) denotes the predefined bounds of the sample size, 
and (ML, MU) denotes the number of observations. 

 
3. Bayesian optimal test plan 

To handle the abovementioned optimization problem, the 
framework of the Bayesian optimal test plan comprises the 
following parts: 

(1) The precision criterion for the Bayesian optimal plan-
ning; 

(2) The prior distribution for handling uncertainty in the 
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planning values; 
(3) The optimization algorithm for solving the Bayesian op-

timization problem. 
 

3.1 Precision criterion 

For a given test plan D = {n, m} with the degradation ob-
servations 1{ ( )}m

i i j jy t ==Y  where i = 1 ,…, n, the joint poste-
rior distribution of the model parameters is obtained by using 
Bayes’ theorem: 

 

( ) ( ) ( )
( )

| ,
| ,

|Y

L D
p D

f D
p

=
θ Y θ

θ Y
Y

, (5) 

 
where ( )p q  is the joint prior distribution of model parame-
ters θ , ( )| ,L DY θ  is the likelihood function of degradation 
observations Y  under a specific test plan D , and fY (Y| D) is 
the pre-posterior marginal distribution of degradation observa-
tions Y : 

 
( ) ( ) ( )| | , dYf D L Dp= òθY θ Y θ θ . (6) 

 
On the basis of the joint posterior distribution of the model 

parameters, the reliability of the product at a predefined mis-
sion time is obtained by using Eq. (3). The posterior variance 
of Rm(θ) is given as follows: 

 
( )( ) ( ) ( )( )Var | , Var | | ,m mR D R t p D= ´θ Y θ θ Y . (7) 

 
Given that Eq. (7) has no analytical expression, the variance 

of Rm(θ) is obtained using a sample-based simulation method. 
By generating the posterior samples of the model parameters 
from the joint posterior distribution, the value of Rm( %θ ) at a 
specific sample %θ  is obtained by using Eq. (3). The samples 
of Rm(θ) are obtained, and the variance is summarized from 
these samples. 

The posterior variance Var(Rm (θ)|Y, D) depends on the deg-
radation observations Y. To describe the relationship between 
the test plans and estimation precision, the average value of 
the pre-posterior variance of Rm(θ) is used as the Bayesian 
planning criterion. Such value is computed as the average of 
the posterior variance Var(Rm (θ)|Y, D) over the degradation 
observations Y: 

 
( )( )

( ) ( )( ) ( )
|

AVar |

Var | | , | d

m

m YD

R D

R t p D f D

=

·òY

θ

θ θ Y Y Y
. (8) 

 
3.2 Prior distribution 

In the Bayesian optimal reliability test design, we use prior 
distribution to describe the uncertainty in the model parame-

ters (planning values) [31] to complement the classical design 
of the reliability test with fixed model parameters. The prior 
distribution is also used to incorporate prior information in the 
analysis of degradation observations. Zhang and Meeker [26] 
and Tang and Liu [30] demonstrated that prior distributions 
can exert considerable effects on the optimal test plan. 

The joint prior distribution ( )p θ  for parameters { , }q h=θ  
is specified in this paper on the basis of historical data and 
expert testimonies. The normal, gamma, and lognormal distri-
bution for the prior distribution generated from historical data 
are specified through a statistical analysis of historical data. 
The implementation of Bayesian analysis on the historical 
data can produce a joint posterior distribution for these pa-
rameters. This joint posterior distribution is used as the prior 
distribution for the test design of new products. 

The prior distributions for parameters { , }q h=θ  cannot be 
easily specified for the prior distribution generated from ex-
pert testimonies. Following the method of Yuan et al. [27], we 
indirectly collect the testimonies of experts and then specify 
the prior distribution for these parameters. Given that the deg-
radation process ( )Y t  follows 2( , )q qIG t th  with mean qt  
and variance qt h , we obtain the expert testimonies on the 
degradation mean Mt

E and variance Vt
E at specific time points t. 

The subjective information is quantified and presented as the 
joint probability distribution of degradation mean Mt

E and 
variance Vt

E as fM,V (Mt
E, Vt

E) = fM (Mt
E)•fV (Vt

E), where the 
probability encoding method is generally used [35]. The joint 
probability distribution of the model parameters is obtained by 
utilizing the relationships of parameters { , }q h=θ  with the 
degradation mean Mt

E and variance Vt
E, which are expressed 

as Mt
E = 

qt  and Vt
E = qt h . Such a distribution is imple-

mented by the multivariate transformation of random vari-
ables from Mt

E and Vt
E into q and η. Mathematically, the prior 

distribution obtained through this derivation process is given 
as π(q, η) = fM,V (q, η)•|J|, where J is the Jacobian matrix of the 
function relationships Mt

E = qt  and Vt
E = 

qt h . Prior deriva-
tion is important for the Bayesian design of reliability tests, 
particularly for situations that involve the uncertainty of the 
model parameters and the subjective knowledge of the failure 
mechanism. Refer to Refs. [36-38] for additional details on 
subjective information quantification and prior distribution 
derivation. 

 
3.3 Optimization algorithm 

To perform the test planning, an optimization algorithm is 
introduced to solve the abovementioned optimization problem. 
Given the complexity of the objective function (Eq. (8)), an 
analytical expression is unavailable for the solution of the 
optimization problem. Monte Carlo simulation and large-
sample normal approximation are generally used to find the 
optimal plan. The Monte Carlo method heavily depends on 
huge numbers of iterations and requires an extremely long 
computation time [39]. The large-sample normal approxima-
tion depends on a reasonably large-sample size, and the accu-
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racy of approximation is difficult to verify. We introduce a 
stochastic optimization method with parametric smoothing 
technique to solve the Bayesian optimal design problem for 
the IG process. This method has been used by Liu and Tang 
[30] for ADT designs and by Yuan et al. [27] with the non-
parametric kernel smoothing technique for the step-stress ac-
celerated life test designs. The procedures of the algorithm are 
summarized as follows: 

Step 1: Select N designs of the test plan that spread over the 
design space (i.e., Di = {ni, mi}, i = 1,…, N). 

Step 2: For each design Di, i = 1,…, N, calculate the Bayes-
ian planning criterion AVar(Rm (θ)| Di) by using Monte Carlo 
integration. 

2(a) Draw R sets of degradation observations independently 
(i.e., Yi, k , k = 1,…, R). These sets are implemented by gener-
ating a set of model parameters θi, k from the prior distribution 
π(θ), and then generating degradation observations 

, , 1{ ( )}m
i k i k j jy t ==Y  with the test plan Di = {ni, mi} from the IG 

process model shown in Eq. (1). 
2(b) For each set of degradation observations Yi, k , k = 1,…, 

R, calculate the posterior distribution of the model parameters 
by using the Bayesian method. The distribution is imple-
mented by sampling the posterior samples of the model pa-
rameters from the posterior distribution given in Eq. (5) by 
using the Markov chain Monte Carlo method (MCMC). 

2(c) For each group of posterior samples of the model pa-
rameters, calculate the variance of product reliability at a pre-
defined mission time by using the posterior sample-based 
simulation method. The variance is implemented by substitut-
ing the posterior samples into Eq. (3) to obtain the posterior 
samples of R (tm| θ). The variance of product reliability for the 
degradation observations is summarized from the variance of 
these samples. 

2(d) Calculate the mean value of Var(R(tm|θ)•p(θ|Y, Di)) for 
the R sets of degradation observations to obtain AVar(Rm (θ)|Di) 
under the test plan Di. 

Step 3: Fit a smooth surface by using the method of kernels 
to the R pairs of points, which include test plans Di and their 
corresponding AVar(Rm (θ)| Di). To facilitate the calculation 
of the optimal point on the basis of the smooth surface, a pa-
rametric polynomial regression model with maximum degrees 
of up to five is used in this research. For the two decision vari-
ables D = {n, m} considered in this paper, the smooth curve is 
computed as follows: 

 

( )( )
2

3
00 11 ,3

1

3 4 4
4

,4 0 0
1 1 1

AVar | , k k
m k k

k

l l i j
l l i j

l i j

R n m p p nm p n m

p n m p n p m

-
-

=

-
-

= = =

= + +

+ + +

å

å å å

θ
, (9) 

 
where ps denotes the parameters of the smooth curve. 

Step 4: Find the optimal design D* by using the smooth sur-
face obtained above. 

4. Illustrative example 

This study uses an optimal GaAs laser degradation test de-
sign and the dataset of Meeker and Escobar [9] to demonstrate 
the proposed method. The degradation test design for the data-
set with the gamma process model has been previously inves-
tigated by Tsai et al. [21]. In this section, we investigate this 
dataset with the IG process model by using the proposed 
method. Wang and Xu [22] and Ye and Chen [23] found that 
the IG model is suitable for this dataset compared with the 
gamma process model. 

The light output of a GaAs Laser device will degrade over 
time. To maintain a constant light output, the operating current 
gradually increases as a complement of the inherent degrada-
tion. The GaAs Laser degradation dataset describes an in-
crease in operating current over time for 15 GaAs laser de-
vices. This dataset is presented as (Yi, Ti), i = 1,…, n, with the 
sample size n equals 15. The observation time points Ti = 
{0.25, 0.5, 0.75, …, 4} thousand hours are the same for all 
samples with fi = 0.25 thousand hours and mi = 16. The degra-
dation observations Yi measure the increase in operating cur-
rent in terms of percentage. The GaAs Laser device fails when 
the operating current reaches the predefined threshold of YD = 
6%. 

To perform the Bayesian optimal degradation test on the 
GaAs Laser device, the abovementioned degradation data are 
encoded as the prior distributions of the model parameters. 
The Bayesian analysis results of the degradation data are pre-
sented in Table 1. In the following degradation test design, the 
distributions of the model parameters that are shown in Table 
1 are treated as true model parameters with uncertainty. The 
generation of model parameters in Step 2(a) is sampled from 
this prior distribution. 

The predefined variables for the degradation test planning 
are given as follows. The measurement interval (frequency) is 
assumed as f = 0.05 thousand hours. The predefined mission 
time of interest is given as tm = 5 thousand hours. The cost 
configuration is assumed Csa = 30 and Cme = 2. The constraints 
of the sample size and the number of observations are given as 
2 50n£ £  and 5 50m£ £ .  

On the basis of prior distribution and the predefined setting 
of the degradation test, we implement the optimization proce-
dure presented in Sec. 3.3. The smooth curve (Fig. 1) is ob-
tained by performing Steps 1 to 3 presented above.  

The dots denote the pairs of points including the test plans 
Di = {ni, mi} and their corresponding AVar(Rm (θ)| Di). The 
smooth curve denotes the fitted result of the polynomial re-

Table 1. Prior information of model parameters that are generated from 
the GaAs Laser degradation data. 
 
Parameter Mean SD 2.5% 97.5% Fitted PDF 

q  1.404 0.01834 1.368 1.440 Lognormal (0.3390, 0.0131) 

h  9.966 1.046 8.017 12.11 Gamma (90.6531, 0.1099) 
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gression model given in Eq. (8) to the pairs of points. The 
curve describes the relationship between the average pre-
posterior variance of reliability AVar(Rm (θ)| Di) and the deci-
sion variables {ni, mi}. In detail, the curve is generated from 
46 pairs of test plans and their pre-posterior variance of reli-
ability. The 46 designs of test plans are uniformly picked in 
Step 1 within the constraints of design variables. The corre-
sponding pre-posterior variances of reliability are obtained in 
Steps 2 and 3 by using the Bayesian method with non-
informative prior distribution. The non-informative priors for 
the model parameters are incorporated in Step 2(b) to make 
the estimation result depend on the degradation data. The pri-
ors are given as ( )~ Uniform 0,5q  and ( )~ Uniform 0,100h . 

The optimal degradation test designs are obtained in Step 4. 
The results are presented in Table 2. 

The fitted smooth curve and optimal test plans indicate that 
a large-sample size and number of observations improve the 
reliability estimation accuracy. However, the sample size and 
number of observations must be balanced when the test re-
sources are limited. In this situation, the optimization results 
indicate that large numbers of observations are more preferred 
than a larger sample size. The same indication is observed by 
comparing the degree of inclination between the upper right 
part and upper left part of the smooth curve in Fig. 1. The 
optimal test plans presented in Table 2 also demonstrate this 
conclusion. When the test cost is extremely limited, such as a 
budget of CD = {500, 400, 100}, a large number of observa-
tions close to the boundary may be generated on the basis of 
the optimal results presented in Table 2. Fig. 2 presents a de-
tailed description of the relationship between the design vari-
ables and precision criterion. The solid line indicates the rela-
tionship between the number of observations and precision 
criterion with a fixed sample size of 2n = . The dash line 
indicates the relationship between the sample size and preci-
sion criterion with a fixed number of observations of 5m = . 
By comparing the slopes of these curves, we find that the ef-
fect of increasing the number of observations greatly over-
comes the effect of increasing the sample sizes. 

5. Value of prior information 

In the Bayesian optimal test design, prior distributions are 
used to describe the uncertainty of the planning values (model 
parameters). Prior distributions are performed by generating 
the degradation data presented in Step 2(a). The prior informa-
tion of the model parameters is incorporated in the analysis of 
the degradation data, which is implemented by the Bayesian 
analysis of degradation data in Step 2(b) and is formulated in 
Eq. (5). The Bayesian optimal test design provides great flexi-
bility for considering parameter uncertainty and incorporating 
prior information. The prior distribution adopted in the Bayes-
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Fig. 1. Fitted smooth surface for the simulated plans with non-
informative priors. 

 

Table 2. Optimal test plans with non-informative priors for the model 
parameter under different constraints of test costs. 
 

Test constrains Optimal test plans 

DC  ( ),L UN N  ( ),L UM M  n  m  ( ),TC n m  
( )( )|MAVar R Dθ  

100 (2, 50) (5, 50) 2 10 100 0.3272 

200 (2, 50) (5, 50) 2 35 200 0.2722 

300 (2, 50) (5, 50) 2 43 232 0.2594 

400 (2, 50) (5, 50) 3 43 348 0.2468 

500 (2, 50) (5, 50) 4 44 472 0.2349 

1000 (2, 50) (5, 50) 8 45 960 0.1931 

1500 (2, 50) (5, 50) 13 42 1482 0.1595 

2000 (2, 50) (5, 50) 31 17 1984 0.1213 

2500 (2, 50) (5, 50) 37 18 2442 0.1000 

3000 (2, 50) (5, 50) 40 20 2800 0.0958 

3500 (2, 50) (5, 50) 40 20 2800 0.0958 

4000 (2, 50) (5, 50) 33 45 3960 0.0947 

4500 (2, 50) (5, 50) 36 47 4464 0.0911 

5000 (2, 50) (5, 50) 40 47 4960 0.0875 

5500 (2, 50) (5, 50) 44 47 5456 0.0833 

6000 (2, 50) (5, 50) 46 50 5980 0.0767 

6500 (2, 50) (5, 50) 50 50 6500 0.0638 
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Fig. 2. Fitted smooth curve between the design variable ( n  or m ) 
and precision criterion ( )( )AVar |MR Dθ . 
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ian test design can consequently exert a considerable effect on 
the optimal test plan. 

To study the effect of prior distribution on the optimal test 
design, we use the prior distribution generated from historical 
data to describe the uncertainty in the model parameters 
(planning values). The non-informative prior distributions, the 
priors obtained from historical data, and the priors generated 
from expert testimonies are separately used in the analysis of 
degradation observation to investigate the value of prior in-
formation for the optimal test design. These prior distributions 
are presented in Table 3. 

The fitted smooth curves and corresponding optimal test 
plans are obtained by applying the procedures in Sec. 3.3 with 
the priors in Table 3. The fitted smooth curve for the non-
informative prior is presented in Fig. 1. The fitted smooth 
curves for the other priors are separately presented in Figs. 3 
and 4. Similar to Fig. 1, the dots refer to the pairs of points 
that include the test plans Di = {ni, mi} and their corresponding 
AVar(Rm (θ)| Di). The smooth curves denote the fitted results 
of the polynomial regression model given in Eq. (8) to the 
pairs of points. The optimal test plans are obtained on the ba-
sis of the fitted smooth curves.  

By comparing these fitted smooth curves, we find that the 
test plans with informative priors can generate results that are 
more precise than those obtained under non-informative priors. 
This result is attributed to the effect of incorporating prior 
information through prior distributions. The effect of priors 
becomes obvious for test plans with limited resources, such as 

plans with a sample size of 2 5n£ £  and a number of obser-
vations of 5 10m£ £ . Table 4 shows a detailed comparison 
of optimal test plans under limited test resources with different 
priors. When the test has a limited budget, such as CD = {100, 
300, 500}, the optimal test plans obtained under informative 
priors can arrive at more precise reliability estimations than 
plans that are generated under non-informative priors. More-
over, the optimal test plans generated under informative priors 
with a test cost of 100 can lead to reliability estimation results 
that are as precise as those of the optimal test plans generated 
under non-informative priors with a test cost of 3000. Table 4 
highlights these findings by underlining the corresponding 
results. 

A further study has indicated that the prior information of 
parameter q is more effective than the prior information of 
parameter h  for the Bayesian optimal degradation test de-
sign developed on the basis of IG process. If these prior distri-
butions of the model parameters are wrongly specified, an 
anomalous smooth curve will be generated, thus consequently 

Table 3. Prior distributions adopted in the Bayesian optimal test design. 
 

Type of priors Prior distributions 

Diffused priors for non-informative 
situation (Type I) 

( )
( )

~ Uniform 0,5
~ Uniform 0,100

q
h
ìï
í
ïî

 

Priors obtained from historical  
data (Type II) 

( )
( )

~ Lognormal 0.3390,0.0131
~ Gamma 90.6531,0.1099

q
h

ìï
í
ïî

Priors obtained from testimonies of 
experts (Type III) 

( )
( )

~ Lognormal 0.35,0.01
~ Gamma 10,1

q
h

ìï
í
ïî
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Fig. 3. Fitted smooth curve for the Bayesian optimal test design with 
informative priors generated from historical data. 

 
 

Table 4. Comparison of the optimal test plans with different priors 
under a constrained sample size ( 2 50n£ £ ) and number of observa-
tions ( 5 50m£ £ ). 
 

Optimal test results Constraint 
Prior type 

n m ( ),TC n m ( )( )AVar |MR Dθ  DC  

I 2 10 100 0.3272 

II 2 10 100 0.0962 

III 2 10 100 0.0929 

100 

I 2 43 232 0.2594 

II 2 50 260 0.0950 

III 5 15 300 0.0916 

300 

I 4 44 472 0.2349 

II 3 50 390 0.0939 

III 8 16 496 0.0910 

500 

I 40 20 2800 0.0958 

II 23 50 2990 0.0745 

III 24 47 2976 0.0761 

3000 
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Fig. 4. Fitted smooth curve for the Bayesian optimal test design with 
informative priors generated from expert testimonies. 
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leading to fallacious optimal test plans. For instance, the 
anomalous smooth curve presented in Fig. 5 is obtained with 
prior ( )~ Lognormal 1.0303,0.0652q  and ( )~ Gamma 10,1h , 
where the mean of q in this prior distribution is double of the 
real mean of q. The abnormality of the smooth curve is pre-
sented as the anomalous increase of posterior variance with 
the increase of sample size and number of observations. This 
anomaly indicates a contradiction between the prior informa-
tion and degradation observations. However, the incorrect 
incorporation of prior distribution can be prevented by check-
ing the smooth curve or by following a well-defined proce-
dure for prior derivation, such as the procedure presented in 
Sec. 3.2. 

Accordingly, the value of prior information is determined 
by the optimal test planning under a limited test budget. This 
value is also highlighted from the perspective of test cost un-
der equivalent test plans. The informative priors have a high 
worth within the Bayesian optimal degradation test design if 
they are correctly derived and incorporated. 

 
6. Conclusion 

This paper introduces a Bayesian approach for the devel-
opment of an optimal degradation test design on the basis of 
the IG process. The degradation process is modeled by using 
an IG process. The uncertainty within the planning values of 
the model parameters is addressed by adopting a Bayesian 
optimal test design. Such uncertainty is formulized as an op-
timization problem that aims to minimize the average pre-
posterior variance of reliability at a predefined mission time. 
A trade-off between the sample size and number of observa-
tions is investigated. A stochastic optimization with a step-by-
step procedure is developed to solve the Bayesian optimiza-
tion problem. The Bayesian approach and procedure are illus-
trated through a classic example. The proposed method is a 
valuable complement of degradation test planning for the situ-
ations wherein the Wiener and gamma processes are insuffi-
cient for degradation modeling. The Bayesian optimal test 
design for the handling of uncertainty within the planning 

values of the model parameters is important for degradation 
test planning with uncertainty. The effect of prior distributions 
on the optimal test design is investigated. The incorporation of 
priors for the optimal degradation test design presents signifi-
cant potential. Such incorporation is particularly effective for 
situations with limited test resources.  

Interesting results are obtained from the degradation test 
planning of GaAs lasers. A large-sample size and number of 
observations improve the precision of the reliability estimation 
of GaAs lasers. However, when the test resources are limited, 
a large number of observations is preferred than a large-
sample size for the degradation test of GaAs lasers. The prior 
distributions also exert an indispensable effect on the optimal 
design. Test plans with informative priors can arrive at more 
precise results than those obtained under non-informative 
priors. Well-derived and correctly incorporated prior distribu-
tions can greatly increase the precision of reliability estimation.  

However, several points are worth investigating further. The 
Bayesian approach is developed for the degradation test on the 
basis of the IG process. This model can be extended to the 
degradation test planning on the basis of the IG process with 
random effects. The other types of Bayesian optimal degrada-
tion test designs under heterogeneous operating environments 
also warrant further investigation. 
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Nomenclature------------------------------------------------------------------------ 

( )Y t  : Degradation process of a product 
( )tL  : Mean function of the IG process 

h  : Scale parameter of the IG process 
( )Y tD  : The degradation increment 

T  : Lifetime of a product 
( )| ,R t q h  : Reliability function of a product 

mt  : A predefined mission time 
{ , }q h=θ  : Model parameters of a degradation process 

Rm (θ) : Reliability of a product at time tm 
Var(Rm (θ)) : Variance of reliability at time tm 
n : Sample size 
f : Measurement frequency 
m : Maximum number of observations 
t : Observation time point 
D : A test plan 
f (θ| Y, D) : Posterior distribution of model parameters condi-

tionally on a test plan and degradation observa-
tions  

Var(Rm (θ)| Y, D) : Variance of reliability at time tm condition-
ally on a test plan and degradation observations 

Var(Rm (θ)| D) : Variance of reliability at time tm conditionally 
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Fig. 5. Fitted smooth curve for the Bayesian optimal test design with 
the wrongly informative prior of parameter q. 
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on a test plan  
( ),TC n m  : Total cost of a degradation test 

Csa : Unit cost of a test sample 
Cme : Unit cost of a degradation observation 
CD : Predefined budget for the degradation test 
NL : Lower bound of the sample size 
NU : Upper bound of the sample size 
ML : Lower bound of the number of observations 
MU : Upper bound of the number of observations 
( )p θ  : Prior distribution of the model parameters 
( )| ,L DY θ  : Likelihood function of the degradation observa-

tions under a test plan 
( )| ,p Dθ Y  : Posterior distribution of the model parameters 

conditionally on a test plan and degradation ob-
servations  

fY (Y| D) : Pre-posterior marginal distribution of the degra-
dation observations Y 

Mt
E : Mean value of a degradation process 

Vt
E : Variance value of a degradation process 

J : Jacobian matrix  
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