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ABSTRACT: Probabilistic methods have been widely used to account for uncer-
tainty of various sources in predicting fatigue life for components or materials. The
Bayesian approach can potentially give more complete estimates by combining test
data with technological knowledge available from theoretical analyses and/or previ-
ous experimental results, and provides for uncertainty quantification and the ability
to update predictions based on new data, which can save time and money. The aim
of the present article is to develop a probabilistic methodology for low cycle fatigue
life prediction using an energy-based damage parameter with Bayes’ theorem and to
demonstrate the use of an efficient probabilistic method, moreover, to quantify
model uncertainty resulting from creation of different deterministic model parame-
ters. For most high-temperature structures, more than one model was created to
represent the complicated behaviors of materials at high temperature. The uncer-
tainty involved in selecting the best model from among all the possible models should
not be ignored. Accordingly, a black-box approach is used to quantify the model
uncertainty for three damage parameters (the generalized damage parameter,
Smith�Watson�Topper and plastic strain energy density) using measured differences
between experimental data and model predictions under a Bayesian inference frame-
work. The verification cases were based on experimental data in the literature for the
Ni-base superalloy GH4133 tested at various temperatures. Based on the experimen-
tally determined distributions of material properties and model parameters, the pre-
dicted distributions of fatigue life agree with the experimental results. The results
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show that the uncertainty bounds using the generalized damage parameter for life
prediction are tighter than that of Smith�Watson�Topper and plastic strain energy
density methods based on the same available knowledge.

KEY WORDS: energy, life prediction, low cycle fatigue, probabilistic, turbine disk,
uncertainty.

INTRODUCTION

T
HE TURBINE DISK is a critical flight safety component of gas turbine aero-
engines, for which a failure could lead to catastrophic results. This com-

ponent is subject to high temperature, corrosive, and oxidative conditions.
Low cycle fatigue (LCF) at high temperature is a key failure mode of turbine
disks. With an increasing performance and thrust-to-weight ratio of gas
turbine aero-engines, higher stress and temperature will be borne by disks,
and higher reliability is desirable. In order to reduce weight and improving
working life while keeping or increasing reliability (Besson, 2010), an accu-
rate algorithm for probabilistic LCF life prediction of high-temperature
structures is essential, which is the main purpose of this contribution.

In physics-based reliability assessment of mechanical components, phys-
ical models are used to predict the life of the components that operate under
the basic failure mechanisms such as fatigue and creep. Component fatigue
data contain significant amounts of scatter (Grell and Laz, 2010).
Additional uncertainties in engineering analysis arise due to three types of
sources (Zhang and Mahadevan, 2000): (1) physical uncertainty, (2) statis-
tical uncertainty, and (3) model uncertainty. Physical uncertainty refers to
the natural variability or fluctuations in the environment, test instruments,
observer, and so on. Hence, for the same physical quantity, repeated obser-
vations do not yield identical results. Statistical uncertainty is described by
the uncertainty in the statistical distribution parameters of the random var-
iables identified in the first source, due to the scarcity in the data. Model
uncertainty arises from the fact that models of physical processes generally
have many underlying assumptions and often are not valid for all situations.
It occurs because models are not perfect and includes uncertainty in both
probabilistic and mechanical models. In particular, it is worth mentioning
the recent article (Park et al., 2010), where model probability is used to quan-
tify the model uncertainty, suggest that uncertainty in the error of model
prediction as well as model uncertainty should be incorporated into a
response prediction. In each case, the uncertainty exists in model accuracy
as well as model selection. Historically, these uncertainties have been dealt
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with by applying experience-based safety factors to the fatigue analysis
of critical components, driving the likelihood of failure to an acceptable
level. Compared with deterministic analyses, probabilistic methods represent
the input parameters as distributions and predict distributions of perfor-
mance. In principle, by formalizing the available knowledge as a prior
credibility on model parameters, a probabilistic method via Bayes’ theorem
will make more accurate inference on the quantities of interest. Recently,
numerous studies have focused on probabilistic aspects of fatigue failure,
including fatigue cracks propagation (Wang, 2009) and stress-life (S-N) data
analysis (Guida and Penta, 2010) using Bayesian inference, as well probabil-
istic fatigue life prediction using the AFGROW life prediction software
(Grell and Laz, 2010). However, very few attempts have been made in the
past to use Bayesian approach in the probabilistic LCF life assessment and
the model uncertainty analysis.

By combining probabilistic methods with a damage parameter, it is
possible to predict LCF life for turbine disks and to evaluate the total
uncertainty of those predictions. Until now, various damage parameters
have been proposed for assessing the fatigue life of structures or materials,
such as Smith�Watson�Topper (SWT; Smith, 1970), plastic strain energy
density (PSED; Morrow, 1965), Fatemi-Socie criterion (FSC; Fatemi and
Socie, 1988), thermodynamic entropy (TE; Naderi, 2010), viscosity-based
damage parameter (VDP; Zhu and Huang, 2010; Zhu et al., 2011a), and
generalized damage parameter (GDP; Zhu et al., 2011b). Since these tradi-
tional structural life prediction methods are deterministic in nature, they do
not explicitly account for the uncertainties associated with their life esti-
mates. In general, it is possible to improve the accuracy of these methods
using complex approaches, such as the finite element method; however, it is
impossible to completely and formally characterize different uncertainties.
Estimations made by the deterministic models for life cycle design and prog-
nosis purposes are useful only in certain cases where a large amount of
fatigue test data are available. Uncertainties are mainly due to the lack of
data available to build the models. Such data could be gathered from mate-
rial tests, full-scale fatigue tests and inspections during the service life. To
account for the scarcity of materials data and fatigue test data, the uncer-
tainty of the model structure itself, and its predictions must be characterized.
Probabilistic methods such as the Bayesian approach provide a formal
framework to characterize such uncertainties. This article proposes a
probabilistic method to estimate the LCF life of a turbine disk alloy, by
considering all available data that contribute to uncertainties associated
with the damage parameter.

Accounting for and quantifying the uncertainties associated with a model
prediction allows not only for a judgment of confidence in the model
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prediction but can also result in the estimation of other important qualities

such as the probability of exceeding a physical limit. This article will expand

previous research capable of characterizing the model uncertainty for appli-

cations to LCF life prediction. The studied alloy is a Ni-base Superalloy

GH4133, which is used as a turbine disk material in gas turbine engines.

Using the experimental results of GH4133 (Wang, 2006), an energy-based

damage parameter, and estimates of experimental uncertainty, research per-

formed by Ontiveros et al. (2010) resulted in a probabilistic LCF life pre-

diction framework and an estimation of the model uncertainty, as shown in

Figure 1. With regard to the probabilistic LCF life prediction framework

showed in Figure 1, �, ", and T are the measured stress, strain, and temper-

ature, respectively. Pi i ¼ 1, 2, . . . ,Nð Þ represents the model parameters of the

damage parameters.
This research attempts to (1) find a practical way to efficiently incorporate

different possible sources of uncertainty into the fatigue life predictions and

(2) quantify the total model uncertainty using the black-box approach. This

methodology follows the Bayesian inference framework, which was used to

determine an estimation of uncertainty associated with the model predic-

tions when compared with experimental results and a black-box approach in
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Bayesian Inference 
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Figure 1. Probabilistic LCF life prediction framework using Bayes’ theorem.
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which no consideration of the uncertainties associated with the inner work-
ings of model was given.

The article is organized as follows: In the next section, the previously
developed generalized energy-based damage parameter (Zhu et al., 2011b)
capabilities are addressed more extensively to account for the effects of
temperature and mean stress on the fatigue life. Then, a probabilistic LCF
life prediction framework developed using Bayes’ theorem is introduced. In
order to account for the model uncertainty, a black-box approach
(Ontiveros et al., 2010) is used to describe the probabilistic relationship
between the mean model predictions and the experimental values. In the
Probabilistic LCF Life Predictions section, this probabilistic life prediction
methodology was verified using three different damage parameters with
experimental results of GH4133 under different temperatures. The Output
Updating Using a Bayesian Inference section is devoted to account for
model uncertainty of GDP, SWT, and PSED damage parameters. Finally,
the article is concluded in the Conclusion section.

PROBABILISTIC LCF LIFE PREDICTION FRAMEWORK

A Generalized Energy-Based Damage Parameter for LCF Life Prediction

Under cyclic loading conditions, the interactive behavior between the
stress and the strain during deformation can be represented by hysteresis
loops. Thus, an energy perspective can be used to quantify this interaction.
A certain quantity of energy is gradually dissipated by cyclic fatigue and
creep during LCF at high temperature. Once the critical energy is reached,
fracture will occur. As more damage is accumulated, more energy is dissi-
pated. Following this one-to-one relation, the dissipated energy of a material
is used to measure the damage of the material. The accumulated interaction
effects in a material result in its eventual failure. Consequently, in terms of
the stress�strain hysteresis loop under high temperature, various researchers
have developed fatigue life curves by adopting an energy parameter to esti-
mate the life of a material under different loading conditions. These methods
are often called energy-based fatigue life prediction models in a broad sense.

A considerable amount of effort has been extended in defining a suitable
damage parameter that correlates the life to failure (Fatemi A, and Socie,
1988; Voyiadjis and Kattan, 2009; Naderi, 2010; Zhu and Huang, 2010). Up
to now, the damage parameters have been represented by stress, strain,
inelastic strain energy, and strain energy density. It was found that the
total plastic energy required for fatigue failure is not a constant but increases
with a decrease in stress amplitude, and this total energy depends on the
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stress or plastic strain amplitude via the cyclic stress�strain behavior

(Halford, 1961; Morrow, 1967). This means that it is difficult or almost

impossible to use this definition to measure fatigue damage directly in the

vast majority of cases. Recent research indicates that it is better to use the

PSED as a damage parameter rather than the plastic strain range for drastic

hardening or softening conditions (Hong, 2005; Lee, 2008). The stable

PSED, which is defined as the inner area of the cyclic stress�plastic strain

hysteresis loop, is commonly applied as a damage parameter in predicting

the fatigue life. Many studies have attempted to establish the fatigue criteria

based on the PSED (Koh, 2002; Chiou and Yip, 2006; Lee, 2008). Using the

cyclic strain energy density parameter, Koh (2002) investigated fatigue

damage and fatigue life of high pressure tube steel under strain-controlled

tests. The total cyclic strain energy density provided a good prediction on

the fatigue behavior of this steel. According to the mean strain effects in a

LCF regime, Chiou and Yip (2006) proposed a modified energy parameter,

namely, the stable PSED under tension conditions, for life prediction. Since

the magnitude of this damage parameter is half of that of the PSED, there

are no intrinsic differences between either of these two parameters for life

prediction. Lately, in order to account for the effect of temperature on

fatigue life, Lee et al. (2008) developed an energy-based life prediction

model using the PSED. Though the lives predicted by this model are

within a factor of 2.5, this model exhibits an overestimating tendency as

temperature increases.
According to the damage parameters reviewed above (Chiou and Yip,

2006; Lee et al., 2008), degradation mechanisms such as creep and mean

stress effects have not been adequately addressed. These effects are consid-

ered to be important factors affecting the fatigue resistance at high temper-

ature (Gao et al., 2005). In order to account for the effects of creep and

mean stress on the LCF lives of high-temperature structures, a new damage

parameter for life prediction was developed based on the PSED method

(Zhu et al., 2011b).
In LCF, there is a considerable amount of plastic straining within the

material, and the hysteresis energy absorbed during fatigue cycling has

been postulated as a basis for failure analysis. Therefore, the fatigue resis-

tance of the material can be characterized in terms of its capacity to absorb

and dissipate plastic strain energy. Through the analysis of cyclic plastic

strain energy, Morrow (1965) has expressed the relation between the

PSED �Wp and the fatigue life Nf as

�Wp �N
�
f ¼ C1 ð1Þ
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where � and C1 are material constants representing the fatigue exponent and

the material energy absorption capacity, respectively.
Assuming that the material used satisfies the Masing’s hypothesis, the

PSED �Wp, absorbed during a cycle is the area of the hysteresis loop and

can be derived from the cyclic stress�strain curve (Morrow, 1965):

�Wp ¼
1� n0

1þ n0
��� ��"p ð2Þ

The cyclic stress�strain response describes the relationship between flow

stress and plastic strain amplitude under cyclic loading. Based on the

Ramberg-Osgood relation (1943), the cyclic stress�strain curve can be

described by

��

2
¼ K0

�"p
2

� �n0

ð3Þ

where the cyclic strain hardening exponent n0 is a measure of work harden-

ing during cycling.
Using Equation (3), the cyclic strength coefficient K0 and the cyclic strain

hardening exponent n0 can be obtained from the log�log linear regression

analysis of the cyclic strain amplitudes and the corresponding cyclic stress

amplitudes for fully reversed fatigue tests.
Substituting Equation (3) into Equation (2) gives

�Wp ¼ 4K0
1� n0

1þ n0
�

�"p
2

� �1þn0

ð4Þ

The LCF life is dependent on test parameters (Zhu et al., 2011c). In case

of failure under time-dependent damaging mechanisms such as creep and

environmental corrosion, experimental results from Chen et al. (2001) and

Sun et al. (2008) showed that both the shape and the size of hysteresis loop

are influenced by cyclic frequency, loading waveform, and fatigue harden-

ing/softening. Enlightened by this characteristic, an attempt has been made

to deduce a new damage parameter for life prediction, in which the fatigue-

creep toughness is used as the control parameter, as explained below.
Similar to the assumption that toughness of a material is a product of its

ductility and its cyclic strength (Goswami, 2004), Ostergren proposed the

strain energy damage function model (Ostergren, 1967). The strain energy

damage function �Ws can be expressed approximately by the multiplication

of the inelastic strain range �"inand maximum tension stress �max, that is,

�Ws ¼ �"in�max ð5Þ
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where the inelastic strain range �"in can be replaced by the plastic strain
range �"p under the pure fatigue mode. The relationship between strain
energy and fatigue life can be expressed by the power exponent function as

�WsN
�
f ¼ C2 ð6Þ

where � and C2 are material constants that are determined experimentally.
Under LCF conditions, �"in is approximated by �"p. By integrating

Equation (4), we can obtain a new expression to describe the process of
LCF.

Nf ¼
C1þn0

2

2n
0�1�1þn0max

1þn0

1�n0ð ÞK0 �Wp

 ! 1
� 1þn0ð Þ

ð7Þ

Then, a new life evaluation relation can be obtained as shown in Equation
(8) after rearranging various terms and further simplifying Equation (7).

Nf ¼ p �Wp�
1þn0

max

� �q
ð8Þ

p ¼
C1þn0

2 1� n0ð ÞK0

2n
0�1 1þ n0ð Þ

� � 1
�ð1þn0 Þ

ð9Þ

where p and q are material parameters that related with the cyclic stress�-
strain relationship of material.

Based on Equation (8), it should be noted that �Wp�
1þn0

max follows a certain
law with LCF life, which includes factors influencing fatigue life and creep
life and also takes into account the mean stress effects. This will be referred
to as a GDP.

Moreover, the mechanism of cyclic hardening effect has been incorpo-
rated into the proposed damage parameter when using it for LCF life pre-
diction. The generalized energy-based damage parameter in Equation (8) is a
semi-empirical and physics-based relation, used in many different situations.
This equation describes the average behavior, and the life in different tests
varies around this average life. In order to describe the variation, a prob-
abilistic life prediction framework is developed in the section on A
Probabilistic LCF Life Prediction Framework Using Bayes’ Theorem.

A Probabilistic LCF Life Prediction Framework Using Bayes’ Theorem

In the current study, the input parameters were modeled as distributions,
and perturbed variables for the probabilistic methods were incorporated
into the physical or mechanical model (e.g., the generalized energy-based
damage parameter). The end result was a predicted distribution of LCF life.
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This section focuses on the physical and statistical model updating. A vari-
ety of probabilistic methods were implemented and evaluated to consider
efficiency and accuracy for the various specimens, such as Monte Carlo
simulation, the most probable point methods and a Bayesian approach
(Haldar and Mahadevan, 2000).

In general, it is better to make decisions subject to uncertainty using all
the knowledge available, old and new, objective and subjective. This is espe-
cially true when estimating turbine safety and managing the life cycle of a
turbine. A Bayesian approach can potentially provide more accurate esti-
mates by combining evidence such as test data with prior knowledge avail-
able from theoretical analyses and/or previous experimental results, which
can reduce required testing and save time and resources. The Bayesian infer-
ence is a technique used to update a given state of knowledge. The Bayesian
framework is presented in Figure 2. In a typical Bayesian analysis, the esti-
mation of a vector of unknown model parameters � is updated from its prior
probability distribution function (PDF) using information inferred from
observed data, D. The prior distribution of the parameters is denoted by
�0 �ð Þ and the information acquired from the data, D often represented by
the likelihood function, L D �jð Þ. Following the Bayesian framework, the
result, � � Djð Þ, is an updated state of knowledge in the form of a posterior
PDF. Through the posterior distribution, the current state of knowledge
about the total uncertain quantities can be summarized. The posterior of
� is obtained via Bayes’ rule

� � Djð Þ ¼
�0 �ð ÞL D �jð ÞR

� �0 �ð ÞL D �jð Þd�
ð10Þ

where � ¼ p, n0, q, s
� �

is the vector of the parameters p, n0, q, and s, which will
be defined in more detail later. L D �jð Þ is the likelihood function or proba-
bility of the observed data D with given parameters �. And � � Djð Þ is the
posterior joint distribution of � after combining observed evidence and prior
knowledge of fatigue tests.

Prior
p0(x )

Model for
data

Data

Posterior
p(x∏D)

Bayesian
inference

Likelihood
L (D∏ x)

Figure 2. Bayesian inference framework (Azarkhail and Modarres, 2007b).
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The Bayesian estimation approach treats parameters of the distribution

model in Equation (8) as random, not fixed, quantities. Before modeling the

current sample data, old information and/or even subjective judgments are

often used to construct a prior distribution model for these parameters.

Then the likelihood of observed data is used to revise this prior judgment

into a so-called posterior distribution model for the model parameters.

Thus, Bayes’ theorem is a method of mathematically expressing a decrease

in uncertainty gained by an increase in knowledge.
It should be noted that the factor L D �jð Þ=

R
� �0 �ð ÞL D �jð Þd� represents the

impact of the evidence on the belief in the PDF of the parameters.

Multiplying the prior PDF of the parameters by this factor provides a the-

oretical mechanism to update the prior knowledge of parameters with new

data. Thus, Bayes’ theorem measures to what degree new evidence should

alter a belief in the PDF of the parameters.
Many fatigue test results indicated that the lognormal distribution is suit-

able for describing the statistical scattering of the fatigue lives (Nelson,

1982). Thus, the assumption of a lognormal distribution in the scatter of

experimental results is a common assumption made, but given expert judg-

ments, other PDFs may be used. The data are represented in the form of a

likelihood function based on a lognormal distribution and are combined

with a subjective prior distribution. The general form of the lognormal like-

lihood function used in the model parameter uncertainty analysis is shown

as follows:

L D p, q, s
� ���� �

¼
Yn
i¼1

1ffiffiffiffiffiffi
2�
p

sNf

exp �
1

2

ln Nf

� �
� ln pð Þ � q ln �Wp�

1þn0

max

� �
s

" #2
0
@

1
A
ð11Þ

where s is a model parameter equal to the natural logarithm of the standard

deviation of the number of cycles to failure.
The variability of cyclic strength coefficient K0 and cyclic strain hardening

exponent n0 resulting from the scatter of historical data are assumed to

follow lognormal distributions. Based on the stress�strain relationship in

Equation (3), the conditional PDF of K0 and n0 at a given stress and strain

can then be obtained as

L D K0,n0,s0
� ���� �

¼
Yn
i¼1

1ffiffiffiffiffiffi
2�
p

s0 ��=2ð Þ
exp �

1

2

ln ��=2ð Þ�ln K0ð Þ�n0ln �"p=2
� �

s0


 �2 !

ð12Þ
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where s0 is a model parameter equal to the natural logarithm of the standard
deviation of stress range.

The intercept parameters of the GDP (i.e., p, n0, q, and s) automatically
take into account any possible non-zero mean for error such that the model
remains insensitive to a new parameter if being introduced as mean. This
likelihood is combined with the PDFs developed to represent the prior state
of knowledge resulting in an estimation of the posterior as described by
Equation (10). As turbine disk test results can be prohibitively expensive
and time consuming to acquire, model parameters p, n0, q, and s in Equations
(11) and (12) are better determined using Bayesian estimation rather than
the maximum likelihood estimation for instances in which only small sam-
ples set are available. In a Bayesian approach, the uncertainty bounds are
derived using the whole posterior joint distribution of parameters. The joint
distribution of model parameters is the most efficient way to incorporate
different possible sources of uncertainty into model predictions. Within the
Bayesian framework, in order to make a fatigue life prediction at a given
stress, the mean prediction life ~Nf can be estimated as illustrated in Equation
(13). This is basically the expected value of the model prediction for all
possible parameters p, n0, q, and s as presented with the posterior
distributions.

~Nf ¼

Z
p,n0, q, s

� p, n0, q, s
� �

Dj
� �

p �Wp�
1þn0

max

� �q� 
dpdn0dqds ð13Þ

In the Bayesian approach, the posterior joint distribution of parameters
represents the most up to date state of knowledge given the present evidence.
Moreover, the available information is stored as a distribution of the model
parameters. This distribution may be considered as prior information to be
updated when new data become available. In practice, the statistical infer-
ences in these equations involve high-dimensional integrations that usually
are very computationally intensive. Therefore, most of Bayesian analyses are
performed using Markov Chain Monte Carlo (MCMC) simulation. As an
efficient technique for Bayesian inference problems, MCMC simulation is a
general simulation technique based on drawing samples iteratively from
proposed distributions and then correcting those draws in each step of the
process to better approximate the target posterior distribution when this
target distribution cannot be directly sampled. MCMC process starts with
an initial guess for the parameter vector � and calculates the new
set of parameters utilizing the features of the target posterior distribution.
It generates a sample set � ¼ �1, �2, �3, . . . , �m

� �
, �i ¼ pi, n

0
i, qi, si

� �
,

i ¼ 1, 2, 3, . . . ,m, representing the posterior density of parameters p, n0, q,
and s. For a given �, the PDF of LCF life can be readily predicted.
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Clearly, any dependence among the parameters represented by the vector �
is taken into account by the MCMC simulation.

For this study, a Bayesian updating procedure has been constructed to
estimate the parameters p, n0, q, and s in Equations (11) and (12). The
Bayesian inference is solved using the WinBUGS (Lunn et al., 2000) plat-
form to run the necessary MCMC simulation. Due to its convenience to use,
it has been recently used in reliability engineering for accelerated life test
data analysis (Azarkhail and Modarres, 2007a) and parameter estimation
research (Azarkhail and Modarres, 2007b). For detailed information on
WinBUGS, readers are referred to Cowles (2004).

Model Uncertainty Using a Black-Box Approach

Models are essential to understanding physical behaviors and predicting
the responses of physical systems. Generating a life prediction model is the
process of idealizing the complicated load conditions into a relatively simple
form through making a set of assumptions. Moreover, apart from the sim-
plifying assumption, models may also vary depending on the decisions made
during modeling process with regard to the modeler’s preference and
requirements of model user. Given two or more life prediction models
assessing a mechanical component, the problem of choosing a single approx-
imation model that best assesses its fatigue life with the highest fidelity is
often difficult. As model uncertainty derives from our lack of knowledge, it
is categorized as epistemic uncertainty. As aforementioned, the third main
source of uncertainties in engineering analysis, model uncertainty, should be
incorporated into LCF life prediction. An interesting question to be
answered is how precise are the obtained predictions expected to be.

In this study, the Bayesian inference is used a second time to characterize
the total model uncertainty when compared to experimental results, similar
to the work presented in Azarkhail et al. (2009). Output updating with
independent experimental results (results not used to update model param-
eters) helps account for uncertainties not captured in the distributions devel-
oped for inputs and model parameters. In a black-box approach, the
uncertainty is quantified with no knowledge of the model’s inner workings
or their respective contributions to the output uncertainty. The black-box
approach is presented graphically in Figure 3.

From the black-box viewpoint, the error associated with the experimental
measurements is assumed to be independent of that of the error resulting in
model predictions (Azarkhail et al., 2009). For the cases that experimental
uncertainties are not directly provided, experimental uncertainties must be
estimated. Very rarely is information pertaining to experiential uncertainties
available. When unavailable, uncertainties will need to be developed using
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expert judgment or technological knowledge available from theoretical anal-

yses and/or previous experimental results.
According to the black-box methodology, both the model prediction and

the experimental result are considered to be independent representations of

the physical reality being predicted. In order to compare these representa-

tions to the real value, the concept of a ‘multiplicative error’ (Azarkhail

et al., 2009) for each test i ¼ 1, 2, . . . , kð Þ is used to characterize the exper-

imental error Ft,i and the model prediction error Fp,i. It is assumed that the

ratio of real life and model prediction or experimental results is a random

variable with lognormal distribution, which can be defined and represented

as shown in Equations (14) and (15):

Nreal, i

Nft,i
¼ Ft,i Ft � LN bt, stð Þ ð14Þ

and

Nreal, i

Nfp,i
¼ Fp,i Fp � LN bp, sp

� �
ð15Þ

Combining Equations (14) and (15) leads to the relationship between the

experimental uncertainty and model uncertainty,

Ft,iNft,i ¼ Fp,iNfp,i ð16Þ

and

Nft,i

Nfp,i
¼

Fp,i

Ft,i
¼ Fpt,i ð17Þ

Assuming Fp and Ft are independent gives:

Fpt � LN bp � bt,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p þ s2t

q� 
ð18Þ

Deterministic
Inputs

Deterministic
Outputs

Deterministic
Experimental Values

1
2… … … …

N

Black-Box

M1 E1
M2 E2

ENMN

Bayesian
Inference

Figure 3. Black-box approach to model uncertainty (Ontiveros et al., 2010).
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After having observed a random sample of number of cycles

to failure Nft ¼ Nft,1,Nft,2, . . . ,Nft,n

� �
and model prediction

Nfp ¼ Nfp,1,Nfp,2, . . . ,Nfp,n

� �
, one can combine the prior �0 bp, sp

� �
with the

likelihood

L Nft,i,Nfp,i, bt, st bp, sp
��� �

¼
Yn
i¼1

1ffiffiffiffiffiffi
2�
p Nft,i

Nfp,i

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p þ s2t

q

exp �
1

2
�

ln
Nft,i

Nfp,i

� 
� bp � bt
� �h i2

s2p þ s2t

0
B@

1
CA

ð19Þ

Thus, the resulting posterior joint distribution using a Bayesian inference

is

� bp, sp Nft,i,Nfp,i, bt
�� , st

� �
¼

�0 bp, sp
� �

� L Nft,i,Nfp,i, bt, st bp, sp
��� �R

sp

R
bp

�0 bp, sp
� �

� L Nft,i,Nfp,i, bt, st bp, sp
��� �

dbpdsp

ð20Þ

where �0 bp, sp
� �

is the prior joint distribution of parameters,

� bp, sp Nft,i,Nfp,i, bt
�� , st

� �
is the posterior joint distribution of parameters.

The aim of this posterior joint distribution is to update the distributions

of parameters bp and sp as new available data are incorporated.
Based on the above assumptions, the real-life distribution Nreal can be

readily obtained using MCMC samples of �0 bp, sp
� �

. By given a model pre-

diction Nfp, using Equation (15) yields:

Nfp given as a model prediction
Fp � LN bp, sp

� �
Nreal ¼ FpNfp

9=
;) Nreal � LN ln Nfp

� �
þ bp, sp

� �
ð21Þ

In this section, a black-box approach to evaluate model likelihood using

experimental and model predictions under a Bayesian inference frame-

work is developed so as to make an informed estimation of model

uncertainty. This methodology is demonstrated with the engineering

problem of a LCF life assessment process in the sections

Probabilistic LCF Life Predictions and Output Updating Using a

Bayesian Inference.
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PROBABILISTIC LCF LIFE PREDICTIONS

The proposed probabilistic life prediction methodology was applied to

experimental results of the turbine disk material GH4133 (Study on the

Material Properties of turbine Disk and Case of an Aeroengine Series,

1996; Wang, 2006) to verify its feasibility and prediction capability. The

heat treatment conditions of this alloy are austenitization (8 h at 1080�C,

air-cooled) and tempering (16 h at 750�C, air-cooled). Details of mechanical

properties of the materials, test conditions, and strain-life data are reported

in Study on the Material Properties of turbine Disk and Case of an

Aeroengine Series (1996) and Wang (2006). The tests were performed

under axial total strain control with a triangular fully reversed waveform,

using an axial extensometer placed on the specimen. Numerous tests were

carried out with various conditions: mechanical strain range of 0.5�1.4%
for isothermal LCF at temperature 400�C and 500�C under strain ratio

R" ¼ �1. To start the Bayesian updating, prior distributions are needed

for the parameters. Knowledge about the distributions of the parameters

is very limited due to limited theoretical analysis and experimental results.

Therefore, we should subjectively capture as many uncertainties as possible

in the priori estimate of the model parameters.
In the probabilistic analyses, input parameter variability was considered

for coefficient K0 and exponent n0. Once the prior distributions of the param-

eters K0and n0 were chosen based on the theoretical analysis in Zhang (2007),

new knowledge from the test results can be used to update these priors of K0

and n0 using Equation (10). Distributions for the input parameters were

developed from available literature data for GH4133. To simulate speci-

men-to-specimen material property variability, each probabilistic variable

was perturbed from its mean according to its distribution. Based on

Equation (3), the material property of parameters can be obtained from

the Bayesian inference approach using the prior likelihood in Equation

(12) for the experimental data provided in Wang (2006). The result of

Bayesian analysis for the input material parameters is listed in Table 1.
Using Bayesian approach, the available data can be incorporated into a

distribution over the model parameters. The non-informative prior

Table 1. Summary statistics of input material parameters.

Parameter Mean Standard deviation 2.50% Median 97.5%

ln K 0ð Þ 7.403 0.04954 7.306 7.403 7.501
n0 0.1005 0.006093 0.0885 0.1005 0.1125
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distributions for the model input parameters are chosen to be uniform. The
prior and posterior distributions of each input material parameter are pre-
sented in Figure 4.

Similarly, based on the experimental results of GH4133, the marginal

posterior distributions of model input parameters can be obtained using
the prior likelihood in Equation (13) and the generalized energy-based
damage parameter in Equation (10). The result of Bayesian analysis for

the model input parameters is listed in Table 2 and graphically in Figure 5.
After updating with the new test results, the posterior distributions of the

parameters are more accurate than the prior distributions. Thus, probabil-
istic LCF life predictions utilizing the energy-based damage parameter can
be performed based on the Bayesian analysis for the model input parame-

ters. Combining Equation (13) with the summary statistics of model param-
eters and the material properties in Tables 1 and 2, the probabilistic LCF life
for high-temperature structures or materials can be predicted.

ln(k')
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Figure 4. Marginal distributions of model input material parameters using MCMC in
WinBUGS. MCMC: Markov Chain Monte Carlo.

Table 2. Summary statistics of model input parameters.

Parameter Mean Standard deviation 2.50% Median 97.5%

ln pð Þ 27.99 1.114 25.79 28 30.16
q �0.5362 0.03084 �0.5963 �0.5365 �0.4753
s 0.3777 0.05799 0.2844 0.3708 0.5107

Probabilistic Low Cycle Fatigue Life Prediction 1143

 at WUHAN UNIV LIBRARY on November 13, 2012ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


OUTPUT UPDATING USING A BAYESIAN INFERENCE

For this study, a Bayesian inference approach has been used for two
purposes. At the first stage, it is constructed to develop PDFs over model
parameters using the historical data, K0, n0, p, q, and s in Equations (11) and
(12). Using Equation (13), the mean prediction life ~Nf can be estimated
based on the posterior distributions of p, n0, q, and s. At the second stage,
the Bayesian inference is used to compare model predictions with experi-
mental results for the total model uncertainty.

The black-box approach for output updating requires the experimental
uncertainty for the LCF life to be quantified as shown in Figure 1. Using the
LCF life data available from other tests, the coefficient of variation calcu-
lated was used to place an uncertainty on the experimental lives. Figure 6
shows the PDF of the coefficient of variation calculated by the ReliaSoft
Weibullþþ 7 software. With the coefficient of variation calculated from 10
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Figure 5. Marginal distributions of model input parameters using MCMC in WinBUGS.
MCMC: Markov Chain Monte Carlo.
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group tests, a normal distribution was fit to the coefficient of variation with

the following parameters: mean¼ 0.1872 and standard deviation¼ 0.0755 as

presented in Figure 6. From the above analysis, the experimental uncer-

tainty for use in the black-box approach was determined to be approxi-

mately, 18.72%, as the ‘Upper/Lower Exp’ lines shown in Figures 7�9.
This experimental uncertainty is a combination of the measurement uncer-

tainty and model input uncertainty.
The mean of the model prediction ~Nf was compared with the experimental

result in the black-box approach. The summary statistics for the marginal

posterior PDFs of parameters bp, sp
� �

and the multiplicative error factor Fp

using GDP are shown in Table 3.
The resulting estimated model uncertainty using Bayes’ theorem has an

upper bound of þ49.6% and lower bound of �61.32% as shown in

Figure 7, which correspond to the upper and lower bounds of the multipli-

cative error factor Fp.
The capability of this new model was evaluated and compared with two

other popular parameters, the SWT and PSED ones. Smith et al. (1970)

proposed that fatigue damage can be evaluated as the product of maximum

stress and strain amplitude. The product of �max"a is conventionally referred

to as a SWT parameter, which can be applied for LCF life prediction under

strain controlled tests and simplified as

�max"að ÞN�
f ¼ C ð22Þ

Similarly, the summary statistics of the black-box results using the SWT

and PSED parameters are shown in Table 4. Based on SWT method in

Equation (22) and PSED method in Equation (1), the black-box results

for LCF life prediction are given in Figures 8 and 9, respectively.
Figures 7�9 show that all the predicted cyclic lives by these three damage

parameters are in a factor of �2 to the test ones. Probabilistic life prediction

using the GDP method has a tighter uncertainty bounds than the SWT and

PSED methods based on the same available knowledge. The tighter bounds

are attributed to the GDP, which considers the mean stress effect and the

Table 3. Black-box summary statistics using GDP for experimental results.

Parameter Mean Standard deviation 2.50% Median 97.5%

bp �0.2706 0.09179 �0.4527 �0.2707 �0.08733
sp 0.3176 0.0788 0.2009 0.3051 0.506
Fp 0.8074 0.2916 0.3868 0.7624 1.496

GDP: generalized damage parameter.
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mechanism of cyclic hardening effect on fatigue life. Through the control
damage parameter (�Wp�

1þn0

max ), it was shown that the probabilistic life pre-
diction methodology developed could transform the complex correlation
between Nf and �max, �m, ��, �"p, material properties (K0, n0) into a rational
relation. The stochastic nature of fatigue performance was simulated by
treating material properties (K0, n0) and the total model uncertainty as var-
iables with distributions. The probabilistic predictions using GDP showed
good agreement with the experiment results by mean and bounds (e.g., 2.5%
and 97.5%). Based on the physical basis for both stress-life and fracture-
mechanics analysis, �Wp�

1þn0

max can predict the LCF life with tighter uncer-
tainty bounds than the others, as þ49:6 %, � 61:32 %½ �for GDP,
þ87:3 %, � 62:16 %½ �for SWT, and þ137:8 %, � 42:65 %½ �for PSED,
which leads to better decision making and model selection based on the
same available knowledge.

According to both the GDP and SWT methods, the value of Fp for the
model predictions is less than 1, which suggests a bias in this model to
overpredict the real fatigue life. For the PSED method, the value of Fp

for the model predictions is larger than 1, it shows a bias to underpredict
the real fatigue life. Moreover, the uncertainty bounds will shift to represent
the error associated with the model when the model has a tendency to over-
predict or underpredict the fatigue life. It appears that, in Figures 7 and 9,
the uncertainty bounds do not fully capture the scatter of data. This stems
from the fact that the scatter of data in this analysis is assumed to be a result
of the error in the experimental results and model predictions. Furthermore,
the results presented for the model uncertainty are those of the model pre-
diction corrected by the multiplicative error of model to the real fatigue life
Fp. Therefore, the uncertainty bounds presented are those of the model
estimation of reality. It also means that the GDP parameter has a tendency
to over predict the real fatigue life as shown in Figure 7 and the PSED

Table 4. Black-box summary statistics using the SWT and PSED for experi-
mental results.

Model Parameter Mean Standard deviation 2.50% Median 97.5%

SWT bp �0.1737 0.1019 �0.3757 �0.1734 0.02868
sp 0.3803 0.0828 0.2579 0.3672 0.578
Fp 0.9105 0.3935 0.3784 0.8399 1.873

PSED bp 0.1563 0.09428 �0.03168 0.157 0.3424
sp 0.3381 0.07813 0.225 0.3254 0.5262
Fp 1.247 0.4781 0.5735 1.168 2.378

PSED: plastic strain energy density, SWT: Smith�Watson�Topper.
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parameter to under predict the real fatigue life as shown in Figure 9. In the
overpredict condition, the estimation of reality given the model prediction is
expected to be lower.

As previously discussed, one of the advantages of Bayesian inference is
that the previous analysis can be updated with new data. Using the
WinBUGS platform to solve the Bayesian inference in probabilistic life
prediction, it will reduce computational intensity and characterize the uncer-
tainties associated with model input parameters. In engineering, the GDP
can be used to evaluate the LCF damage with adequate test data and the
developed probabilistic framework can be used to predict the LCF life by
considering uncertainties due to lack of data. Besides, the application of this
probabilistic methodology to other cases such as random loading spectrum
and updating with more knowledge will be further evaluated.

CONCLUSIONS

In this article, a probabilistic LCF life prediction framework using differ-
ent damage parameters is developed to quantify the input uncertainty of
material properties and model uncertainty resulting from creation of differ-
ent deterministic model parameters. To check the feasibility and validity of
this methodology, the LCF test data of GH4133 were compared with the
predicted results by the GDP, SWT, and PSED parameters. Some conclu-
sions can be drawn from the present investigation.

1. Using different damage parameters, the proposed framework successfully
implemented a Bayesian inference to the LCF life prediction, which
incorporates the uncertainty of model parameters and material properties
into the prediction. By updating the input parameters with new data, this
probabilistic methodology can provide more valuable information for
assessing the life of structural components.

2. When using a model to obtain a better predictive capability of fatigue
damage in the selection, design, and safety assessments of engineering
components, the uncertainty due to models should be accounted for.
The black-box approach gives a quick estimation of uncertainty and
describes the probabilistic relationship by comparing the mean model
predictions to the experimental values.

3. It should be pointed out that the GDP developed yields more satisfactory
probabilistic life prediction results for GH4133 under different tempera-
tures than both the SWT and the PSED ones. It has a tighter uncertainty
bounds than the SWT and PSED methods based on the same available
knowledge. The proposed probabilistic methodology appears to be an
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interesting alternative to the deterministic methods for LCF life predic-
tion and estimating lower bounds of design quantiles.
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NOMENCLATURE

bp=mean, error of model to the real value
bt=mean, error of experiment to the real value

C,C1,C2=material constants representing the material energy absorption
capacity

D=vector of Data
E=elastic modulus
Fp=multiplicative error of model to the real value
Ft=multiplicative error of experiment to the real value
Fpt=multiplicative error of experiment to model prediction
K0=cyclic strength coefficient

L :ð Þ= likelihood function
LN :ð Þ= lognormal distribution function

Nf=number of cycles to failure
~Nf=mean prediction life

Nfp=model prediction
Nft=experimental result

Nreal= real fatigue life
n0=cyclic strain hardening exponent
s=model parameter, natural logarithm of the standard deviation of

the number of cycles to failure
s0=model parameter, natural logarithm of the standard deviation of

stress range
sp=standard deviation, error of model to the real value
st=standard deviation, error of experiment to the real value
R"=strain ratio

�,�, �=material constants representing the fatigue exponent
"a=strain amplitude

�"t= total strain range
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�"e,�"p=elastic strain range and plastic strain range
�"in= inelastic strain range

�Wp=plastic strain energy density (PSED)
�Ws=strain energy
�max=maximum stress
�m=mean stress
��=stress range

�max"a=SWT parameter
�=vector of parameters

� � Djð Þ=posterior joint distribution of parameters
�0 �ð Þ=prior joint distribution of parameters
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