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Abstract
Due to epistemic uncertainty, precisely determining parameters of all distribution is impossible in engineering practice.
In this article, a novel reliability analysis method based on the saddlepoint approximation is proposed for structural sys-
tems with parameter uncertainties. The proposed method includes four main steps: (1) sampling for random and
probability-box variables, (2) approximating the cumulant generating functions for systems under the best and worst
cases, (3) calculating saddlepoints for the best and worst cases, and (4) calculating the lower and upper bounds of the
probability of failure. The proposed method is effective because it does not require a large sample size or solving compli-
cated integrals. Furthermore, the proposed method provides results that have the same accuracy as the existing interval
Monte Carlo simulation method, but with significantly reduced computational effort. The effectiveness of the proposed
method is demonstrated with three examples that are compared against with the interval Monte Carlo simulation
method.
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Introduction

Uncertainty exists widely in almost all practical engi-
neering. Uncertainty can be divided into two types:
aleatory and epistemic.1–6 Aleatory and epistemic
uncertainties are usually modeled by probability theory,
interval numbers, fuzzy sets theory,7–10 and probability-
boxes (p-boxes)8 among other methods. Since the per-
formance and reliability of products are directly
affected by uncertainty, quantitative assessment of
uncertainty on product performance is widely recog-
nized as an important task in practical engineering.11,12

Reported methods for calculating the probability of
failure can be divided into simulation methods and
approximation methods. Monte Carlo simulation
(MCS) is very robust because it can address many relia-
bility issues and it is generally accurate if a sufficient
number of samples are used. However, the computa-
tional efficiency of MCS is very low especially for the
products with high reliability.13 To overcome the short-
coming of the expensive computational cost of the
MCS method, many approximation methods have been

developed including the first-order reliability method
(FORM),14 second-order reliability method (SORM),15

first-order saddlepoint approximation (FOSPA),13

mean value first-order saddlepoint approximation
(MV-FOSPA),16 moment-based methods,17 Kriging
models,18 and perturbation techniques.19 However,
these aforementioned reliability analysis methods are
based on probability theory that can only address alea-
tory uncertainty rather than both aleatory and episte-
mic uncertainties simultaneously.

Oberkampf et al.20 pointed out that the system
response evaluation is a challenging problem when the

School of Mechanical, Electronic, and Industrial Engineering, University of

Electronic Science and Technology of China, Chengdu, China

Corresponding author:

Hong-Zhong Huang, School of Mechanical, Electronic, and Industrial

Engineering, University of Electronic Science and Technology of China,

No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan

611731, China.

Email: hzhuang@uestc.edu.cn

 at Shanghai Jiaotong University on March 14, 2015pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


input parameters are associated with epistemic uncer-
tainty. This means that reliability analysis for structural
systems under both aleatory and epistemic uncertain-
ties is very difficult to deal with. Recently, a unified
uncertainty analysis (UUA) method was developed by
Du and colleagues5,21 for reliability assessment and
reliability-based design of structural systems. They
have shown that the most probable point (MPP) search
is a double optimization process with both inner and
outer loops when mixture of variables exists in the sys-
tem.21 In order to avoid the MPP search and non-
normal to normal transformations, a UUA method
based on MV-FOSPA (denoted as MV-FOSPA-UUA)
was presented by Xiao et al.,22 wherein the perfor-
mance function is linearized with the Taylor expansion.
Zaman et al.23 developed a probabilistic approach for
structural systems with both aleatory and epistemic
uncertainties where the interval variable is represented
by a Johnson family distribution. Möller et al.24 devel-
oped the fuzzy first-order reliability method (FFORM)
for structural systems involving both aleatory and epis-
temic uncertainties, wherein both aleatory and episte-
mic uncertainties are modeled by fuzzy random
variables. Wang et al.25 proposed a reliability analysis
method for structural systems with both aleatory and
epistemic uncertainties using fuzzy random variables.
Zhou and Mourelatos26 proposed a reliability-based
design optimization (RBDO) method based on possi-
bility theory for structural systems with insufficient
data. Furthermore, it should be noted that a set of
problems involving aleatory and epistemic uncertainties
were studied by the Sandia National Laboratories,27,28

and they have shown p-boxes offer many significant
advantages since they provide convenient ways to han-
dle both aleatory and epistemic uncertainties.8,28

Generally, the uncertain distribution parameters (such
as the mean value and the standard deviation (SD))
can only be expressed as intervals rather than precisely
determined under the case of limited data samples.29 A
probability distribution with interval distribution para-
meters can be represented using p-boxes.30 Zhang
et al.31,32 developed an interval Monte Carlo simulation
(IMCS) method for structural reliability assessment
with p-box variables. Ferson and Tucker33 proposed a
sensitivity analysis method with p-box variables.

Structural reliability assessment with interval para-
meters is still a challenging problem and more attention
should be given to handle these problems. When p-box
variables exist in a system, calculation of the probabil-
ity of failure needs to consider families of distributions
whose parameters are within the specified intervals30,31

and to combine the methods of interval analysis and
classical probability theory. In this article, we consider
both aleatory and epistemic uncertainties for the para-
meters when reliability analysis is performed. Based on
the research by Huang and colleagues12,34 on the SPA
and SPA-based simulation methods for structural sys-
tems with aleatory uncertainty exclusively, we extend
their works to propose a novel and efficient reliability

method for structural systems with interval parameters.
In the proposed method, probability distributions with
interval parameters are modeled using p-box variables.
In order to avoid considering families of distributions
whose parameters are within the intervals and reduce
computational burden, the simulation and SPA meth-
ods are combined to calculate the lower and upper
bounds of probability of failure. Furthermore, when
both p-box and random variables exist in the system
simultaneously, the probability of failure is an interval
rather than a precisely determined value.

This article is organized as follows. Section ‘‘SPA’’
provides a brief introduction to the SPA method.
Section ‘‘The proposed SPA-based reliability method’’
proposes the UUA method for structural systems with
interval parameters. Three numerical examples are pre-
sented in section ‘‘Numerical examples.’’ Finally, sec-
tion ‘‘Conclusion’’ presents a brief discussion and
conclusions to close the article.

SPA

The SPA technique was presented by Daniels35 for
approximating the distribution of a random variable.
Generally, SPA can provide an accurate estimation of
a cumulative density function (CDF) in the left tail
region.22,36,37 A brief introduction of SPA is given
below.

Let X=(X1,X2, . . . ,Xn) be a n-dimensional ran-
dom vector, the cumulant generating function (CGF)
of Ys = gs(X) can be expressed as

K Ys, tð Þ= log

ð‘
�‘

eystf ysð Þdys

2
4

3
5 ð1Þ

where f(ys) denotes the probability density function
(PDF) of Ys.

Daniels35 developed the SPA formula to f(ys) as

fYs
ysð Þ=

1

2p
d2 K Ys, tð Þ½ �

dt2

���
t�s

8><
>:

9>=
>;

1
2

e K Ys, t
�
sð Þ�t�s ys½ � ð2Þ

where d2½K( � )�=dt2 denotes the second derivative of the
CGF with respect to t, and t�s is the saddlepoint that is
the solution of the equation13

d K Ys, tð Þ½ �
dt

=0 ð3Þ

where d½K(Ys, t)�=dt is the first derivative of the CGF
with respect to t.

Using the approximation models proposed by
Lugannani and Rice,38 the probability of failure Pf can
be expressed as

Pf =Pr½gs(X)\ 0�=F(w)+f(w)
1

w
� 1

v

� �
ð4Þ
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where F( � ) and f( � ) are the CDF and the PDF of
the standard normal random variable, respectively; w
and v are defined as w= sign(t)f2½0� K(Ys, t)�g1=2

���
t�s
,

v= tfd2½K(Ys, t)�=dt2g
1=2
���
t�s
, where

sign(t)=
1, t. 0
0, t=0 stands for the sign function
�1, t\ 0

8<
:

From equations (1), (3), and (4), we know that the
key application of SPA is to determine the CGF of Y
when the distribution of X=(X1,X2, . . . ,Xn) is given.
It should be noted that the direct evaluation of the inte-
gration in equation (1) is extremely difficult due to the
unknown PDF of f(ys) and the complicated perfor-
mance function Ys= gs(X). In order to obtain the
approximated CGF of Ys = gs(X), the power expan-
sion method is adopted which is given by12

K Ys, tð Þ’ k1t+
k2t

2

2!
+

k3t
3

3!
+

k4t
4

4!
ð5Þ

where ki is the ith cumulant of Ys.
The values of the first four cumulants k1, k2, . . . , k4

can be determined by using MCS which are given by37

k1 =
S1

N

k2 =
NS2 � S2

1

N(N� 1)

k3 =
2S3

1 � 3NS1S2 +N2S3

N(N� 1)(N� 2)

k4 =
�6S4

1 +12NS2
1S2 � 3N(N� 1)S2

2 � 4N(N+1)S1S3 +N2(N+1)S4

N(N� 1)(N� 2)(N� 3)

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where Si =
PN

j=1 (ys
j)
i
(i=1, 2, 3, 4), N is the sample

size, and y1s , y
2
s , . . . , yNs are sample values of Ys.

SPA has many advantages since it not only yields
extremely accurate probability estimations but also
provides straightforward approximation to both CDF
and PDF without performing any complicated integra-
tion.13,33 SPA has widespread applications in statis-
tics.38–41

The proposed SPA-based reliability
method

General procedure

Consider k p-box variables ~X1, ~X2, . . . , ~Xk (random
variables with interval distribution parameters) and
(n� k) random variables Xk+1,Xk+2, . . . ,Xn; these
variables can be expressed as V=
( ~X1, ~X2, . . . , ~Xk,Xk+1,Xk+2, . . . ,Xn), supposed that V
is the input of a system g. In this article, g(V)=0 and
Y= g(V) are, respectively, called the limit-state func-
tion and the performance function. In order to calcu-
late the lower and upper bounds of the probability of
failure, the proposed method includes (1) a simulation
stage and (2) an analytical evaluation stage. In the
simulation stage, random and p-box variables are

sampled following their corresponding distributions.
Then the elements are mapped through the perfor-

mance function using an optimization approach in
order to find the lower and upper bounds of perfor-
mance function, the CGFs of the system under the best
and the worst cases therefore can be determined by
MCS. In the analytical evaluation stage, the saddle-
points for the best and worst cases are calculated, and
the lower and upper bounds of the probability of fail-
ure of the system are determined. The procedure of the
proposed method is shown in Figure 1, and the details
of each step are presented in the following subsections.

Sampling on random and p-box variables

Consider a random variable Xi with its corresponding
CDF FXi

. The jth sample of Xi can be generated by
using inverse transformation method as

xji =F�1Xi
uji
� �

ð7Þ

where F�1
Xi

is the inverse function of FXi
, and uji is a uni-

formly distributed number in the interval ½0, 1�.
The N samples of X generated by MCS can be

expressed as

x1, x2, . . . , xN
� �

ð8Þ

Figure 1. Procedure of the proposed method.
CGF: cumulant generating function.
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where xj is the jth sample of X, and
xj =(xjk+1, x

j
k+2, . . . , xjn).

For a p-box variable ~Xi, the sampling procedure
using inverse transformation method is shown in
Figure 2. The lower and upper bounds of CDFs of ~Xi

are denoted by FL
~Xi
and FU

~Xi
, respectively. For each uji,

the lower and upper bounds of the jth sample can be,
respectively, given by

~xji
� �L

= FU
~Xi

� ��1
uji
� �

ð9Þ

~xji
� �U

= FL
~Xi

� ��1
uji
� �

ð10Þ

The N samples of ~X can be denoted as

~x1, ~x2, . . . , ~xN
� �

ð11Þ

where ~xj is the jth sample of ~X, and
~xj = f½(~xj1)

L, (~xj1)
U�, . . . , ½(~xjk)

L, (~xjk)
U�g. The mathemati-

cal justification of this sampling can be found in
Alvarez.42

Since the Latin Hypercube sampling (LHS) method
generally requires fewer samples than the direct MCS
with the same accuracy and provides an efficient way
for sampling the entire range of each variable, the sam-
ples generated using LHS is adopted in the article.34

After N samples V are obtained, those are mapped
through g in order to find their corresponding images,
which are intervals and samples of Y. The jth corre-
sponding value of the performance function
Y= g(~X,X) is given by

yj = g ~xj, xj
� �

= g ~xj1
� �L

, ~xj1
� �Uh i

, . . . , ~xjk
� �L

, ~xjk
� �Uh i

, xjk+1, . . . , xjn

n o
ð12Þ

where ~xj and xj are the jth sample for ~X and X, respec-

tively, ~xj = f½(~xj1)
L, (~xj1)

U�, . . . , ½(~xjk)
L, (~xjk)

U�g, and

xj =(xjk+1, x
j
k+2, . . . , xjn).

Generally, the more samples are generated, the more
accurate the results will be. In this article, consider the

balance between accuracy and efficiency, the sample
size N is provided to be 500–1000.

Determining the lower and upper bounds of the
performance function

Since ½(~xji)L, (~x
j
i)
U�(i=1, 2, . . . , k) are intervals, from

equation (12) we know that the jth value of the perfor-
mance function yj is also an interval. The lower and
upper bounds of yj can be, respectively, computed by
equation (13)

yjð ÞL = min g ~X, xj
� �

yjð ÞU = max g ~X, xj
� �

s:t:
~xj1
� �L

4 ~X14 ~xj1
� �U

~xj2
� �L

4 ~X24 ~xj2
� �U

..

. ..
. ..

.

~xjk
� �L

4 ~Xk4 ~xjk
� �U

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ

It should be noted that many constrained global opti-
mization algorithms and software can be used to solve
the above two optimization models easily. From equa-
tions (12) and (13), the lower and upper bounds of the
corresponding N samples of the performance function
can be, respectively, expressed as

y1
� �L

, y2
� �L

, . . . , yN
� �Ln o

ð14Þ

and

y1
� �U

, y2
� �U

, . . . , yN
� �Un o

ð15Þ

Generally, the performance function usually cannot
be expressed using an explicit function in engineering
practices. In this case, the finite element analysis (FEA)
method could be adopted, and the finite element equa-
tion for linear structural systems can be given by

KsU= f ð16Þ

where Ks, U, and f are the stiffness matrix, displace-
ment, and load vectors, respectively.

When all system parameters are interval numbers,
equation (16) can be expressed as

KI
sU

I = fI ð17Þ

where KI
s = ½(Ks)

L, (Ks)
U�, UI = ½(U)L, (U)U�, and fI =

½(f)L, (f)U�, respectively.
Perturbation technique or interval iterative algo-

rithms43,44 can be adopted to solve equation (17). Let
~xj and xj be, respectively, the jth samples for ~X and X,
from equation (17), the jth finite element equation can
be expressed as

kIs
� �j

~xj, xj
� �

uI
� �j

= fI
� �j ð18Þ

where

Figure 2. Sampling for p-box variables.
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kIs
� �j

=

kIs11
� �j

, kIs12
� �j

, . . . , kI1m
� �j

kIs21
� �j

, kIs22
� �j

, . . . , kI2m
� �j

..

. ..
. ..

.

kIsm1

� �j
, kIsm2

� �j
, . . . , kImm

� �j

2
66664

3
77775 ð19Þ

and

fI
� �j

= fI1
� �j

, fI2
� �j

, fI3
� �j

, . . . , fIm
� �jn oT

ð20Þ

respectively.
Since xj is the jth sample for random vector X, it

should be noted that some elements in the matrix kIs
are precisely determined rather than interval numbers,
that is, kIsij = ksij. According to equation (18), the jth
interval displacement vector can be expressed as

uI
� �j

= uI1
� �j

, uI2
� �j

, . . . , uIm
� �jn oT

= uL1
� �j

, uU1
� �jh i

, . . . , uLm
� �j

, uUm
� �jh in oT

ð21Þ

For illustration purposes, the performance function
can be expressed as

Y=Ur � a ð22Þ

where Ur is the displacement of the rth node, and a is a
constant.

According to equation (22), the lower and upper
bounds of the corresponding N samples of the perfor-
mance function based on the FEA can be, respectively,
expressed as

y1
� �L

, y2
� �L

, . . . , yN
� �Ln o

ð23Þ

and

y1
� �U

, y2
� �U

, . . . , yN
� �Un o

ð24Þ

where (yi)L =(uir)
L � a, and (yi)U =(uir)

U

�a i=1, 2, . . . ,Nð Þ.

Approximating the CGF for systems under the best
and the worst cases

When p-box variables exist in a system, there is a family
of CGFs for the system, and the probability of failure
is an interval rather than a number. In order to reduce
computational burden and avoid enumerating all distri-
butions whose parameters are within the intervals, the
lower and upper bounds of the probability of failure
are calculated. In this situation, the system under both
the best and the worst cases should be considered sepa-
rately, and the corresponding best case CGF and the
worst case CGF of the system can be determined. Let
the number of samples be denoted by N; from equa-
tions (5), (6), (14), and (15), the best case CGF and the
worst case CGF can be given by

Kbest Y, tð Þ= kbest1 t+
kbest2 t2

2!
+

kbest3 t3

3!
+

kbest4 t4

4!
ð25Þ

and

Kworst Y, tð Þ= kworst1 t+
kworst2 t2

2!
+

kworst3 t3

3!
+

kworst4 t4

4!

ð26Þ

respectively, where

kbest1 =
Sbest
1

N

kbest2 =
NSbest

2 � Sbest
1

� �2
N(N� 1)

kbest3 =
2 Sbest

1

� �3 � 3N Sbest
1

� �
Sbest
2

� �
+N2 Sbest

3

� �
N(N� 1)(N� 2)

kbest4 =

�6 Sbest
1

� �4
+12N Sbest

1

� �2
Sbest
2

� �
� 3N(N� 1) Sbest

2

� �2n
�4N(N+1) Sbest

1

� �
Sbest
3

� �
+N2(N+1) Sbest

4

� �	
N(N� 1)(N� 2)(N� 3)

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð27Þ

Sbest
i =

XN
j=1

yj
� �Uh ii

(i=1, 2, 3, 4) ð28Þ

kworst1 =
Sworst
1

N

kworst2 =
NSworst

2 � Sworst
1

� �2
N(N� 1)

kworst3 =
2 Sworst

1

� �3 � 3N Sworst
1

� �
Sworst
2

� �
+N2 Sworst

3

� �
N(N� 1)(N� 2)

kworst4 =

�6 Sworst
1

� �4
+12N Sworst

1

� �2
Sworst
2

� �
� 3N N� 1ð Þ Sworst

2

� �2n
�4N(N+1) Sworst

1

� �
Sworst
3

� �
+N2(N+1) Sworst

4

� �	
N(N� 1)(N� 2)(N� 3)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð29Þ
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and

Sworst
i =

XN
j=1

yj
� �Lh ii

(i=1, 2, 3, 4) ð30Þ

respectively.

Calculating saddlepoints for the best and worst cases

According to equation (3), and CGFs for the best and
worst cases in equations (25) and (26), the correspond-
ing saddlepoints tbests and tworsts for the best and worst
cases can be determined by solving the following
equations

d Kbest(Y, t)

 �

dt
= kbest1 + kbest2 t+

kbest3 t2

2
+

kbest4 t3

6
=0

ð31Þ

and

d Kworst(Y, t)½ �
dt

= kworst1 + kworst2 t+
kworst3 t2

2
+

kworst4 t3

6
=0

ð32Þ

respectively.
It should be noted that there are three solutions for

each of equations (31) and (32). Yuen et al.37 described
how to select a proper saddlepoint in details for system
with precisely determined distribution parameters.
However, when p-box variables exist in a system, the
number of saddlepoints is infinite, and the probability
of failure is an interval. In order to reduce computa-
tional burden and calculate the bounds of probability
of failure, the corresponding saddlepoints tbests and tworsts

for the best and the worst cases are required. Based on

the method for selecting saddlepoints presented by
Yuen et al.,37 the methods for selecting the tbests and
tworsts are, respectively, given in Tables 1 and 2; <
denotes real number, and tbests , tworsts 2 ½tLs , tUs �.

Calculating the lower and upper bounds of the
probability of failure

From equation (4), once saddlepoints for the best and
worst cases are, respectively, determined, the use of
SPA becomes straightforward. According to equations
(4), (31), and (32), the lower and upper bounds of sys-
tem probability of failure can be calculated by

PL
f =F wbest

� �
+f wbest

� � 1

wbest
� 1

vbest

� �
ð33Þ

and

PU
f =F wworstð Þ+f wworstð Þ 1

wworst
� 1

vworst

� �
ð34Þ

respectively, where

wbest= sign tbests

� �
2 �Kbest Y, tbests

� �
 �� 	0:5 ð35Þ

vbest = tbests

d2 Kbest(Y, t)

 �

dt2

����
tbests

( )0:5

ð36Þ

wworst = sign tworsts

� �
2 �Kworst Y, tworsts

� �
 �� 	0:5 ð37Þ

vworst = tworsts

d2 Kworst(Y, t)½ �
dt2

����
tworsts

( )0:5

ð38Þ

d2 Kbest(Y, t)

 �

dt2

����
tbests

= kbest2 + kbest3 tbests +
kbest4 tbests

� �2
2

ð39Þ

and

Table 1. Methods for selecting tbest
s .

Case tLs , t
U
s

kbest
4 \ 0

tLs =
kbest

3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kbest

3 )
2 � 2kbest

2 kbest
4

q
�kbest

4

tUs =
kbest

3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kbest

3 )
2 � 2kbest

2 kbest
4

q
�kbest

4

kbest
4 50 and tLs =<

(kbest
3 )2 � 2kbest

2 kbest
4 40 tUs =<

kbest
4 50 and tLs =

�kbest
3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kbest

3 )
2 � 2kbest

2 kbest
4

q
(kbest

4 )

(kbest
3 )2 � 2kbest

2 kbest
4 . 0 and kbest

3 . 0 tUs = ‘

kbest
4 50 and tLa = � ‘

(kbest
3 )2 � 2kbest

2 kbest
4 . 0 and kbest

3 \ 0 tUs =
�kbest

3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kbest

3 )
2 � 2kbest

2 kbest
4

q
kbest

4
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d2 Kworst(Y, t)½ �
dt2

����
tworsts

= kworst2 + kworst3 tworsts +
kworst4 tworsts

� �2
2

ð40Þ

respectively.

Numerical examples

In this section, three examples are used to demonstrate
the accuracy as well as the efficiency of the proposed
method. The first example is an aero-turbine with the
nonlinear limit-state function, the second example is a
beam with the highly nonlinear limit-state function,
and the third example is a truss system with an implicit
limit-state function. A comparative study is also pro-
vided against IMCS.31 The results using IMCS with
large samples are used as the reference when the com-
parison of accuracy and efficiency is made.

Example 1—an aero-turbine

An aero-turbine, shown in Figure 3, the performance
function of fracture criterion is determined by43

Y=ssS�
Cv2

2p
� 2rv2J

where ss is the ultimate strength (measured in MPa), S
is the cross-sectional area (in m2), C is a constant, v is
the rotating speed (in rad/s), r is the mass density (in
kg/m3), and J is the cross-sectional moment of inertia
(in m4). Details of both random and p-box variables are
given in Table 3.

The CDFs of ss and C are shown in Figures 4 and 5,
respectively.

In this example, traditional reliability methods, such
as FORM, SORM, and MCS, cannot be used to

calculate the probability of failure directly because p-
box variables exist in the system. The calculation of the
probability of failure needs to consider families of dis-
tributions whose parameters are within the intervals.
Generally, IMCS with large sample sizes can be used
for reliability analysis of structural systems with p-box
variables. However, the evaluation of the lower and
upper bounds of the performance function under each
sample is an iterative optimization process, which
means that the computational burden by using IMCS
for estimating the lower and upper bounds of the prob-
ability of failure is extremely high. The lower and upper
bounds of the system probability of failure Pr½Y4y�
calculated by IMCS and the proposed method are
given in Table 4 and Figure 6, respectively. It shows
that the CDFs using IMCS and the proposed method
are almost identical to each other over the entire distri-
bution range. This example shows that the computa-
tional efficiency of the proposed method is higher than
IMCS since it only requires 600 samples while the

Table 2. Methods for selecting tworst
s .

Cases tLs , t
U
s

kworst
4 \ 0

tLs =
kworst

3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kworst

3 )2 � 2kworst
2 kworst

4

q
(� kworst

4 )

tUs =
kworst

3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kworst

3

� �2 � 2kworst
2 kworst

4

q
�kworst

4

� �
kworst

4 50 and tLs =<

(kworst
3 )2 � 2kworst

2 kworst
4 40 tUs =<

kworst
4 50 and tLs =

�kworst
3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kworst

3 )2 � 2kworst
2 kworst

4

q
(kworst

4 )

(kworst
3 )2 � 2kworst

2 kworst
4 . 0 and kworst

3 . 0 tUs = ‘

kworst
4 50 and tLs = � ‘

(kworst
3 )2 � 2kworst

2 kworst
4 . 0 and kworst

3 \ 0 tUs =
�kworst

3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kworst

3 )2 � 2kworst
2 kworst

4

q
kworst

4

Figure 3. Aero-turbine.
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sample size of IMCS is 100,000 while they achieve
almost the same accuracy.

Example 2—a beam

A beam, as shown in Figure 7, is adopted to demon-
strate the efficiency and accuracy of the proposed
method. The performance function is given by12

Y= f P,L, a,S, d, bf, tw, tf
� �

=smax � S

where

smax=
Pa(L� a)d

2LI

and

I=
bfd

3 � bf � tw
� �

d� 2tf
� �3

12

Figure 6. The CDFs of Y calculated by IMCS and the proposed
method.
IMCS: interval Monte Carlo simulation; CDF: cumulative density

function.

Table 4. Probabilities of failure calculated by IMCS and the proposed method.

y �13106 0 13106 Sample sizes

IMCS PL
f 0.0018 0.1420 0.4459 100,000

PU
f 0.0035 0.1895 0.5149

Proposed method PL
f 0.0020 0.1430 0.4417 600

PU
f 0.0032 0.1852 0.5122

IMCS: interval Monte Carlo simulation.

Table 3. Details of both random and p-box variables.

Variable Mean value Standard deviation Distribution type

ss 1100, 1130½ � 155.0360 Normal
S 6:2048310�3 1:2161310�4 Normal
C 5.6682 0:0220, 0:0250½ � Normal
v 1293.2890 50.6969 Normal
r 8240 484.5120 Normal
J 1:214657310�4 7:1422310�6 Normal

Figure 4. The interval CDFs of ss.
CDF: cumulative density function.

Figure 5. The interval CDFs of C.
CDF: cumulative density function.
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The details of both random and p-box variables are
given in Table 5.

In Table 5, parameter 1 and parameter 2 denote the
mean value and the SD for the normal distribution,
respectively. While for the uniform distribution, para-
meter 1 and parameter 2 denote the lower and the
upper bounds, respectively.

In this example, the sample sizes of the proposed
method and IMCS are 500 and 100,000, respectively.
The CDFs of P and bf are shown in Figures 8 and 9,
respectively.

The lower and upper bounds of the system probabil-
ity of failure Pr½Y4y� calculated by IMCS and the pro-
posed method are given in Table 6 and Figure 10,
respectively. It is noted that the CDFs are almost iden-
tical to each other over the entire distribution range.
The main advantages of the proposed method are that
it not only yields very accurate probability estimation
but also can be used to calculate the lower and upper
bounds of the probability of failure directly by finding
saddlepoints for the best and worst cases without com-
plicated integrations. Furthermore, the proposed
method is robust because it can be used for reliability
analysis of structural systems with parameter uncer-
tainties. This example also shows that the computa-
tional burden of the proposed method is significantly
lower than that of the IMCS while maintaining almost
the same accuracy.

Example 3—truss system

A truss system with six members,44 shown in Figure 11,
is used to demonstrate the effectiveness of the proposed
method.

The performance function of the truss system is
defined as

Y=1:09�U3x

where U3x denotes the displacement of node 3 in x-axis,
and it is measured in millimeters.

Figure 7. A beam.

Figure 9. The interval CDFs of bf .
CDF: cumulative density function.

Figure 8. The interval CDFs of P.
CDF: cumulative density function.

Table 5. Details of both random and p-box variables.

Variable Parameter 1 Parameter 2 Distribution type

P 6070, 6100½ � 200 Normal
L 120 6 Normal
a 72 6 Normal
S 170,000 4760 Normal
d 2.3 1/24 Normal
tw 0.1 0.22 Uniform
tf 0.2 0.32 Uniform
bf 2:25, 2:35½ � 1/24 Normal
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f=(P, 2P, 2:5P, � 2:5P)T is the applied load vector
(measured in kN), E=2:13 108 is the elastic modulus
(in kN/m2), L = 1.0 is the length (in m), and
Ai(i=1, 2, . . . , 6) are cross-sectional areas (in m2). The
details of both random and p-box variables are given in
Table 7.

In this example, we consider the case that the perfor-
mance function is an implicit function. In order to cal-
culate the U3x, FEA is used, and the lower and upper
bounds of the system’s probability of failure calculated

by using the proposed method and IMCS are given in
Table 8.

Since FEA is time costly, the results calculated by
the FEA-based IMCS method with 15,000 samples are
used as reference results for accuracy and efficiency
comparison. This example shows that the proposed
method is also applicable to the situation where the
limit-state function is an implicit function.
Furthermore, the example also shows that a small
change in the distribution parameters may lead to a
large change in the reliability results. This means that
the reliability analysis results for structural systems by
using precisely determined distribution parameters may
not be correct under the case of less data or imprecise
information. This shows the risk of assuming constant
values for the parameters of the distributions.

Conclusion

Based on MCS and SPA, a novel reliability analysis
method is proposed for structural systems with uncer-
tain distribution parameters. The proposed method
uses a mixture of random and p-box variables rather
than only random variables to model both types of
uncertainties that exist in practical engineering widely.
The main advantages of the proposed method are that
it can yield both accurate probability estimation and
the lower and upper bounds of the probability of

Figure 10. The CDFs of Y calculated by IMCS and proposed
method.
CDF: cumulative density function; IMCS: interval Monte Carlo

simulation.

Table 6. Probabilities of failure calculated by IMCS and the proposed method.

y �23104 0 23104 Sample sizes

IMCS PL
f 0.4189 0.7553 0.9396 100,000

PU
f 0.5472 0.8478 0.9752

Proposed method PL
f 0.4110 0.7539 0.9367 500

PU
f 0.5438 0.8489 0.9769

IMCS: interval Monte Carlo simulation.

Figure 11. Truss system with six members.

Table 8. Probabilities of failure calculated by IMCS and the
proposed method.

Probability of failure Proposed method IMCS

PL
f 0.0015 0.0013

PU
f 0.7392 0.7301

Sample sizes 600 15,000

IMCS: interval Monte Carlo simulation.

Table 7. Details of both random and p-box variables.

Variable Mean value Standard
deviation

Distribution
type

P 20, 20:5½ � 2 Normal
A1;A4 1:0310�3 1:0310�4 Normal
A5, A6 ½1:0310�3, 1:1310�3� 1:0310�4 Normal
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failure directly without complicated integrations. The
proposed method provides an approach to making the
trade-off between accuracy and efficiency since it only
requires small sample sizes. The results of three exam-
ples show that the computational efficiency of the pro-
posed method is higher than IMCS because of small
sample sizes while compared with IMCS. The numeri-
cal examples indicate that the proposed method is
robust because it is also applicable to the situation
where the limit-state function is an implicit function.
Furthermore, the proposed method is an extended
method for dealing with the reliability analysis under
interval distribution parameters, and consequently has
more wide application in engineering practices.

It should be noted that the lower and upper bounds
of the probability of failure calculated by the proposed
method are approximate solutions rather than exact
solutions, and the error of results calculated using the
proposed method for small failure probability problem
may be larger. The more samples we use, the more
accurate the results will be. Integration of the proposed
method in the framework of RBDO problems under
interval parameters will be considered in our future
work.
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