
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Reliability assessment of phased-mission systems under random shocks

Li Xiang-Yua,b, Li Yan-Fenga,b, Huang Hong-Zhonga,b,⁎, Enrico Zioc,d

a School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
b Center for System Reliability and Safety, University of Electronic Science and Technology of China, Chengdu 611731, China
c Chair System Science and the Energy Challenge, Fondation Électricité de France (EDF), CentraleSupélec, Université Paris Saclay, Gif-sur-Yvette cedex 91192, France
d Energy Department, Politecnico di Milano, Milano, Italy

A R T I C L E I N F O

Keywords:
Phased-mission system
Random shocks
Markov regenerative process
Monte Carlo simulation
Altitude and orbit control system

A B S T R A C T

Phased-mission systems (PMSs) are widely used, especially in the aerospace industry. As in the outer space there
are many kinds of cosmic rays, such as the Galactic Cosmic Rays (GCR), randomly hitting on these systems and
causing significant impact on the electronics inside or outside the equipment, a reliability model for PMSs
considering both finite and infinite random shocks is proposed in this paper. The modularization method is used
to simplify the state space model for each phase and reduce the amount of system states, and the Markov
regenerative process (MRGP) is used to describe the hybrid components’ lifetime distributions and the dynamic
behaviors within the modules. Then, two kinds of scenarios, finite and infinite random shocks effect, are both
integrated into the dynamic modules. For demonstration, a phased altitude and orbit control system (AOCS)
subjected to infinite random shocks is illustrated to demonstrate the procedure of the proposed Monte Carlo
simulation. Thirdly, the evaluated system reliability under infinite random shocks is compared with the same
system without considering random shocks. At last, a sensitivity analysis is also provided for completion.

1. Introduction

In this paper, the reliability of phased-mission systems (PMSs)
subjected to random shocks is considered. In a PMS, the system needs to
perform different tasks in successive time periods, known as phases [1].
A classic example is the manned spacecraft whose missions can be di-
vided into launch, orbit-transfer, on-orbit operation and back-to-earth
phases. In these non-overlapping phases, the system needs to accom-
plish different mission demands. For these complex and high-value
aerospace equipment, reliability is a very critical value. Usually, the
reliability of PMSs is defined as the probability that all the consecutive
missions are accomplished successfully. The challenges in the reliability
assessment of PMSs are mainly due to three aspects: (1) dynamic be-
haviors within phases, like the CSP (cold spare) which is commonly
used to improve the system reliability or the FDEP (functional DEPen-
dent); (2) dynamic behaviors among phases, whereby the system con-
figuration changes from one phase to another; moreover, in different
phases the system will be subjected to different environments, which
may lead to different stresses and failure rates [1,2]; (3) phase depen-
dence, in which the components failed in the former phases will remain
failed in the later phases, in non-repairable PMSs [3].

The existing works on the reliability modeling of PMSs can be
classified into two major categories:

(1) Combinatorial methods, like binary decision diagram (BDD)
[1–6] or multi-valued decision diagram (MDD) based models [7]. A
BDD is a direct acyclic graph that is based on Shannon decomposition
and the graph has two sink nodes, labeled 0 and 1, representing the
system working or failure [2]. MDD models are natural extension of
traditional BDD models which has multiple outgoing edges to represent
the system being in different states [7] that are commonly used in
multistate system or system with multiple failure modes. The BDD
method was applied by Zang and Trivedi [2] to assess the system re-
liability of a PMS. Xing applied the BDD method in the reliability
analysis of a generalized PMS, considering the phase-OR as a special
case of PMS [3]. Xing also used the BDD method to assess the system
reliability of PMS considering both common cause failure (CCF) and
imperfect coverage [1], and the PMS considering both internal/external
CCF [5]. Tang and Dugan assessed the system reliability of PMS con-
sidering multimode failures by the BDD method [6]. Besides the BDD
modeling method, the MDD modeling method has also been applied for
PMS reliability analysis, especially considering multi-failure modes. Mo
[7] pointed out that MDD modeling method is more efficient than BDD
method in PMS with multi-failure modes. In general, combinatorial
methods can assess the system reliability efficiently, especially in large
scale systems. But they can only deal with the static system that all the
primary events in the phase fault tree (FT) model are independent on
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each other.
(2) State space oriented models, like Markov chain-based or Petri

net-based models [8–10]. In the state space oriented models, the dy-
namic behaviors in each phase are represented by state space models,
Markov chains or Petri nets. Then the phase dependence is involved in
if components’ states do not change during the jump of the phases.
These models can deal with the dynamic behaviors within phases, like
the CSP, but they suffer from the state explosion problem, especially in
the large scale system.

To overcome the disadvantages of the methods above, a modular-
ization method combined with combinatorial and state space models is
proposed in Refs. [11,12]. Through the modularization method, the
dynamic components are separated as some into independent modules.
As a result, the system can be evaluated by the combinatorial methods
and the independent modules. Therefore, the modularization method
combines the advantages of both methods.

The PMS considered in this paper is employed in the aerospace in-
dustry, e.g., the manned spacecraft. These systems spend most of their
lifetime in the outer space, where they are exposed to many kinds of
cosmic rays, such as the galactic cosmic rays (GCRs) [13]. The ionizing
nature of GCR particles can pose significant threats to the electronics
located onboard, such as the microprocessors to which they may cause
memory bit flips and latch-ups. This kind of phenomenon is generally
called the single event effect (SSE) [13] and occurs randomly, i.e. as a
random shock. If these random shocks are not considered, the reliability
of the PMS will be overestimated.

Random shocks have been considered with different approaches in
reliability modeling [14–24]. Lin and Zio [14] studied the components’
reliability considering both degradation processes and random shocks.
At the system level, Wang and Pham [17] investigated the influence of
the degradation and random shocks, in which the random shocks can
lead the system to failure immediately. Rafiee [18] studied cumulative
random shocks that increase the components’ failure rates. Berker [19]
used a semi-Markov model to describe a system under random shocks.
Recently, Ruiz-Castro [20] considered the extreme failures and cumu-
lative damage caused by the external shocks. However, these methods
are all considered in single-phased systems.

The main contribution of this paper is to integrate random shocks
into the reliability modeling of PMSs and a Monte Carlo simulation
procedure is then developed for its quantification [26–28]. Firstly, the
modularization method is used to divide the system into several in-
dividual modules so that the complicated system FT model can be
simplified. Secondly, the random shocks are integrated into the state
space model of the modules by the MRGP. Thirdly, a Monte Carlo
method for assessing module reliabilities under random shocks is de-
veloped. Finally, the reliability of the PMS is evaluated through the
PMS-BDD method and the mutually independent modules.

The paper is organized as follows. In Section 2, the basic

conceptions of the Markov regenerative process and an altitude and
orbit control system (AOCS) of the manned spacecraft are introduced in
detail. To model the reliability efficiently, the modularization method is
applied to simplify its system FT model. Then, the dynamic module is
modeled by the MRGP. In Section 3, the model for the dynamic module
under random shocks and the MC simulation procedure for assessing
the reliability of the dynamic module under infinite random shocks are
proposed. After that, a dynamic module under finite random shocks is
evaluated by the MC simulation and approximation method, respec-
tively, and the reliability comparison result certifies the proposed MC
simulation procedure. In Section 4, the reliability of the AOCS under
infinite random shocks is evaluated by integrating the PMS-BDD
method and evaluated module reliabilities in previous. Furthermore, a
comparison between the system reliability analysis with and without
random shocks is also provided. Furthermore, the confidence of the MC
simulation method and a sensitivity analysis is performed. The mod-
eling procedure is shown in Fig. 1. The summary of the work and main
conclusions are presented in Section 5.

2. MRGP and multi-phased AOCS

2.1. The multi-phased AOCS

In this paper, the reliability of the AOCS in a manned spacecraft
under random shocks is studied. The AOCS (altitude and orbit control
system) is a critical subsystem of the manned spacecraft to control and
adjust its altitude and orbit in the whole lifetime. If the AOCS fails, the
manned spacecraft cannot stay in the right altitude and orbit.

2.1.1. System working procedure of AOCS
The AOCS consists of three functional subsystems—the sensors, the

processors and the actuators. The working procedure of the AOCS is
shown in Fig. 2. Firstly, the sensors acquire the altitude and orbit data

Nomenclature

Mi The ith module after system modularization
M The states set of the modules
Tn The phase time of phase n
n The phase number
u The arrival rate of the random shocks
λS The failure rate of component S without shocks
λS

n The failure rate of component S after the nthshocks
TF The recorded module failure time
Rsys(t) The system reliability at time t

Acronym

AOCS Altitude and orbit control system

BDD Binary decision diagram
CCF Common cause failure
CSP Cold spare
FDEP Functional DEPendent
FT Fault tree
GCR Galactic cosmic ray
MC Monte Carlo
MDD Multi-valued decision diagram
MRGP Markov regenerative process
PMS Phased-mission system
SSE Single event effects

Simplified by 
modularization method

1.System fault tree(FT) model

2. System fault tree(FT) model
Dynamic module

By MRGP

Static modules

Module reliabilities

3. System reliability evaluation by 
PMS-BDD method and module reliabilities

4. Result analysis.

Fig. 1. The system reliability evaluation procedure.
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and send it to the processors. Secondly, the processors process the data
and make decisions, and then, the instructions are sent to the actuators.
Finally, the actuators adjust the altitude and orbit according to the
instructions. The repetition of this working procedure will keep the
spacecraft on the right altitude and orbit during its whole lifetime.

Considering that different missions need to be accomplished at
different time, the whole lifetime of the AOCS can be divided into four
phases: launching phase, orbital-transfer phase, on-orbit phase and
back-to-earth phase. The phase durations of four phases are =T days21 ,

=T days42 , =T days303 and =T days34 , shown in Fig. 3.

2.1.2. Components and system structure
As described above, the AOCS is composed of three functional parts;
(1) Micro-computers (Processors): working computer (A), standby

computer (B) and a switch component (C). (2) Sensors: sun sensor (D),
earth sensor (E), star track sensor (F) and gyro assembly (G). (3)
Actuators: low thrust thrusters (20 N, cold standby subsystem, working
thruster H, cold standby thruster I and a switch component S), high
thrust thruster (620 N, Q), three Momentum wheels (2 out of 3 sub-
system, J, K and L).

All the components can be divided into two categories: The working
and standby components and the switch components. The lifetime of
the complicated working components follow the Weibull distributions
( = − −F t e( ) 1 t α( / )β, where α is the shape parameter and β is the scale
parameter). And the lifetime of the switches (electronics) follow the
exponential distributions ( = − −F t e( ) 1 λt, where λ is the failure rate).
Due to the confidential requirement, the original data are unavailable,
and the parameters of the components are provided by the designers of
the spacecraft after being processed, as shown in Table 1.

In the launching phase (1st phase), the spacecraft is launched into
the outer space and separated from the rocket. In this phase, the sensors
and the processors are necessary to acquire the position data and pro-
cess it. The processers (A, B and C) and the sensors (D, E, F and G) are
necessary. The FT model of phase 1 is shown as Fig. 4(a).

In the orbit-transfer phase (2nd phase), the spacecraft needs to be

transferred to the working orbit step by step. Besides the processors and
the sensors, the high-thrust thruster 2 and low-thrust thruster 1 are used
for the orbit transfer and orbit micro-adjusting, respectively. In this
phase, the processers (A, B and C), the sensors (D, E, F and G), the high-
thrust thruster (Q) and the low-thrust thruster (H, I and S) are neces-
sary. The FT model of phase 2 is shown as Fig. 4(b).

In the on-orbit phase (3rd phase), the spacecraft works in the
normal orbit and the AOCS needs to keep the spacecraft in the correct
altitude and orbit. In this phase, except for the micro-computers and
sensors, the thruster 1 and momentum wheels are used as actuators to
keep the spacecraft working normally on the right orbit. The processers
(A, B and C), the sensors (D, E, F and G), the low-thrust thruster (H, I
and S) and the movement wheels (J, K and L) are necessary and the FT
model of phase 3 is shown as Fig. 4(c).

In the back-to-earth phase (4th phase). The spacecraft need to
transfer to the lower orbit and then return to earth. In this phase, the
processers (A, B and C), the sensors (D, E, F and G) and the low-thrust
thruster (H, I and S) are necessary and the FT model of phase 4 is shown
in Fig. 4(d).

2.2. Simplified by modularization method

In the previous section, the mission profile and FT models of dif-
ferent phases have been described. Directly applying state-space mod-
eling methods in system modeling for each phase would lead to a very
large number of states for each phase, known as the state explosion
problem [10], which would make it very difficult to evaluate the system
model. In this paper, the modularization method is used to simplify the
system FT models and the state explosion problem can be solved to
some extent.

The modularization method is proposed by Khoda [29] and used in
reliability assessment of PMS by Ou and Dugan [11]. A phase module of
a multi-phased system must meet two conditions [11]: (1) each module
is a set of the basic events, which means a module must be a subset of
all basic events; (2) for each phase, the basic events in the collection
should form an independent sub-tree in the modularized fault tree.
According to these conditions, all the bottom events in the FT models in
Fig. 4 of the ACOS can be divided into five independent modules:

=M A B C1 ( , , ), =M D E F G2 ( , , , ), =M H I S3 ( , , ), , =M J K L5 ( , , ), as
shown in Fig. 5(a)–(e), respectively.

With these modules, the FT model for the entire multi-phased AOCS
after modularization is shown in Fig. 6. All the modules can be regarded

Fig. 2. The working procedure of the AOCS.

Time T/days

Phase 1 
launching

Phase 2. 
Orbital transfer

Phase 3. 
On-Orbit operation

Phase 4. 
Back-to-earth

2 6 36 39

Fig. 3. The mission profile for the AOCS.

Table 1
The parameters for the phased AOCS.

A B D/E/F/G H I Q J/K/L

α 1.563 1.725 2.156 2.093 2.185 1.937 1.358
β(days) 138.12 172.65 1291.50 133.15 188.72 332.84 287.47

C S
λ (days−1) 1/201.95 1/216.01
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as independent bottom events in the modularized FT model and the
system reliability can be assessed by the PMS-BDD method [2] and the
module reliabilities. If there are any dynamic logic gates, the modules
are dynamic modules [30]. The reliability of the static modules can be
easily evaluated by their own RBD. Moreover, the reliability of the
dynamic modules will be evaluated by the Markov regenerative process
(MRGP).

2.3. The MRGP model for the dynamic module

2.3.1. Basic conceptions of MRGP
In general, a Markov generative process {Y(t), t≥ 0} does not

possess the Markov property (the memoryless property). But there is a
sequence of embedded time sequence within Y(t), the Embedded
Markov chain (EMC) =X S X S( , ) { , }n n , which is also called the Markov
regenerative sequence (MRS). It satisfies the Markov property in the
Markov regenerative time points [25],

= − ≤ = ⋯⋯ ⋯⋯
= = − ≤ =

+ +

+ +

X j S S t X i x S S
X j S S t X i

Pr{ , , ; , , }
Pr{ , }

n n n n n

n n n n

1 1 0 0

1 1 (1)

where Xn and Sn are the state being visited and the nth transition time.
Sn in Eq. (1) is the Markov regenerative points and the stochastic

process Y(t) possesses the Markov property at these time points. With
the embedded MRS (X, S), the MRGP Y(t) satisfies,

= ≤ ≤ = = = =+{ }Y j Y u S X i Y j X iPr , 0 , Pr( ).t S u n n t 0n (2)

According to Eq. (2), it can be found that the future of Y(t) from
=t Sn only depends on the past only through state Xn . To define a

Markov regenerative process, the conditional probability matrix θ(t) is
defined as,

= = =θ t Y t j Y i( ) Pr( ( ) (0) ).i j, (3)

In majority of reliability problems involving the MRGP, the primary
concern is to evaluate the conditional probability matrix θ(t). In the
evaluation of θ(t), two matrices, the Q(t) and E(t), are necessary.

Fig. 4. The FT models for each phase of the AOCS.

Fig. 5. The modules for the AOCS.
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=Q t Q t( ) [ ( )]i j, and =E t E t( ) [ ( )]i j, are called the global kernel and the
local kernel of the MRGP, respectively, which are defined as,

= = ≤ =
= = > =

Q t Y t j S t Y i
E t Y t j S t Y i

( ) Pr{ ( ) , (0) }
( ) Pr{ ( ) , (0) }

i j

i j

, 1

, 1 (4)

From Eq. (4), the local kernel, Ei, j(t), describes the state transition
behavior of the MRGP during two consecutive Markov regenerative
epochs(0, S1) and the global kernel, Qi, j(t), describes the state transition
behavior immediately after the next Markov regenerative epoch S1.
With the global kernel Q(t) and the local kernel E(t), the system state
transition probability θ(t) can be evaluated by the Markov renewal
equation [25],

∫= + −θ E θ Qt t t u d t( ) ( ) ( ) ( ).
t

0 (5)

2.3.2. Dynamic module evaluation by MRGP
Using the dynamic module M3 is used as an example, the system

state evaluation procedure is illustrated as follows:

Step 1: construct the state transition diagram. The state transition
diagram of the dynamic module M3 is shown in Fig. 7.
Step 2: identify the structure of the global kernel matrix QM3(t) and
the local kernel matrix EM3(t). According to Fig. 7, the exponential
transition from state S1 to S3 and from state S2 to S4 are concurrent.
It is because that the failure of component S does not affect the
failure process of component H and I. So states S3 and S4 are not the
Markov regenerative epoch. Hence, this stochastic process shown in
Fig. 7 is a MRGP whose EMC is identified by states S1, S2 and S5.
Accordingly, the global kernel matrix QM3(t) and the local kernel
matrix EM3(t) of this MRGP is,

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Q t

Q t Q t

Q t
( )

0 ( ) 0 0 ( )

0 0 0 0 ( )
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M

M M

M

3

1,2
3

1,5
3

2,5
3

(6)

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

E t

E t E t

E t E t

E t

( )

( ) 0 ( ) 0 0

0 ( ) 0 ( ) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ( )

M

M M

M M

M

3

1,1
3

1,3
3

2,2
3

2,4
3

5,5
3

(7)

Step 3: evaluate all the elements in QM3(t) and EM3(t). The elements
in QM3(t) and EM3(t) can be computed according to the competing
failure mechanism. For example, let TH, TI and TS represent the time
to failure of components H, I and S, respectively. Then,

∫
∫

= = ≤ =

= ′

′

= ≤ >

= >

= −

Q t Pr Y S S t Y

Pr H S

Pr T t T T

Pr T u dF u

f u F u du

( ) { ( ) 2, (0) 1}

{ Componet failsbeforecomponent

fails }

{ & }

{ } ( )

( )(1 ( ))

M

H S H
t

S H

t
H S

1,2
3

1 1

0

0 (8)

It should be noted that during the calculation of Q t( )M
1,2

3 , the failure
of the component S does not have any effect on the component I.
Q t( )M

2,5
3 can be evaluated as,

= ⎧
⎨⎩

′ ′
′

⎫
⎬⎭

= ≤ > + ≤ ≤ = ≤

=

′Q t
I S

or I S

T t T T T t T T T t

F t

( ) Pr
Componet fails before component fails

Componet fails after component fails

Pr{ & } Pr{ & } Pr{ }

( )

M

I S I I S I I

I

2,5
3

(9)

Other elements in the global kernel QM3(t) and the local kernel
QM3(t) can be evaluated in the same way.
Step 4: using the evaluated QM3(t) and EM3(t), the system state
transition probability matrix θM3(t) can be evaluated by the Markov
renewal equation shown in Eq. (5).

3. Integrating of random shocks into the PMS reliabiltiy model

In this section, the random shocks (e.g. coming from cosmic rays)
are integrated into the PMS reliability model. After modularization, the
system MFT model is shown in the last section and all the bottom events
in the FT models have been divided into several independent modules.
The dynamic module, cold standby moduleM3, is used as an example to
describe the model considering random shocks. In module M3, H and I
are working components and S is the switch component. According to
the module description, the state transition diagram of M3 is shown in
Fig. 7. State S1 is the perfect working state and S5 is the failure state.

As described in the section of Introduction, the randomly coming
cosmic rays affect the electronics as random shocks. To integrate the
random shocks in the PMS reliability model, some preliminary as-
sumptions are made:

• The arrivals of the random shocks follow a homogeneous Poisson
process [14], with a constant arrival rate u (shown in Fig. 8). By the
opinion of the spacecraft designers, the random shocks occurrence
rate is set to be 5 days once and = −u days1/5 1 in this paper.

• The random shocks and the components’ failure process are

Fig. 6. The modularized fault tree of the multi-phased AOCS.

Fig. 7. The state transition diagram for module M3.
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independent on each other.

• The damage brought by the random shocks is cumulative, and in
particular, the random shocks increase the failure rate of a constant
amount ɛ at each time they occur and cannot lead the components to
failure directly.

In this paper, we assume that M indicates the system state and N
indicates the number of random shocks that have occurred. To integrate
the random shocks in the PMS reliability model, the system state in-
dicator is extended from M into (M, N). After integrating the random
shocks as shown in Fig. 8 into the state transition diagram of Fig. 7, the
state transition diagram with random shocks for module M3 is shown in
Fig. 9.

Furthermore, the failure rates after n random shocks λS
n in Fig. 9 are

set to be = +λ λ (1 ɛ)S
n

S
n[14], where λS represents the transition rate of

the system from state i to state j without random shocks and +(1 ɛ)n

characterizes the cumulative effects of the random shocks. By the opi-
nion of experts, the failure rate increment ɛ, due to a shock, is set to be
0.3 in the case study of this paper. Due to the infinite state number of
dynamic module under infinite random shocks, the Monte Carlo (MC)
simulation method [26,27] is applied to assess the PMS reliability in
this paper. The MC simulation for evaluating the PMS reliability under
random shocks.

3.1. The simulation procedure for dynamic modules

The MC simulation method for the reliability assessment is based on
repeated sampling of realizations of system state configurations and
computation of the system failure frequency [31,32]. In this paper, the
simulation procedure is conducted to evaluate the reliability of the
dynamic module. During each simulation, two quantities, i.e. the
number of random shocks N and the module failure time TF, are re-
corded. In each repeated simulation, the failure time of the dynamic
module,TF M, i, is simulated by the sampled components’ failure time and
the logic within the dynamic module. Using the module M3 as an ex-
ample, the simulation procedure for the dynamic modules is shown in
Fig. 10.

3.2. Certification of the MC simulation

In this section, to certify the proposed MC simulation procedure, the
reliability of module M3 under finite random shocks by the proposed
MC simulation method is compared to the reliability of the same system
by the MRGP and computed by an approximation method.

Considering a scenario that each random shock on component S in
module 3 does not only lead to the increasing of its failure rate, but also
has a cumulative shock damage and the component will fail after a
certain number of random shocks because the cumulative damage
reaches the failure threshold [17,31]. If component S fails after the 3rd
shocks occur, the state transition diagrams for component S under finite
random shocks and module 3 under finite random shocks are shown in
Figs. 11 and 12, respectively.

According to the system description in Section 2.3, the unreliability
of module M3 at time t is the system state transition probability θ t( )M

1,5
3 .

By the Markov renewal equation shown in Eq. (6), the state transition
probability θ t( )M

1,5
3 can be evaluated as,

Fig. 8. The infinite random shocks process.

Fig. 9. The state transition diagram under random shocks for module M3.

Fig. 10. The simulation procedure for dynamic module under infinite shocks.
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∫ ∫= − + −θ t q u θ t u du q u θ t u du( ) ( ) ( ) ( ) ( )M t M M t M M
1,5

3
0 1,5

3
5,5

3
0 1,2

3
2,5

3
(10)

where =q t dQ t dt( ) ( )/i j
M

i j
M

,
3

,
3 .

In Eq. (10), =θ t( ) 1M
5,5

3 and =θ t F t( ) ( )M
I2,5

3 . Then, the q t( )M
1,5

3 and
q t( )M

1,2
3 can be computed as,

=

= −

q t F t dF t

q t F t dF t

( ) ( ) ( )

( ) (1 ( )) ( )

M
S H

M
S H

1,5
3

1,2
3

(11)

where FH(t) is the CDF of component H ( = − −F t t α( ) 1 exp( ( / ) )H H
βH ).

FS(t) is the CDF of component S under finite random shocks and can be
evaluated by the CTMC [10],

= + − + + − − +
− −

− +

−
− −

− +

− − +
− −

− +

F t u λ λ u λ λ λ λ λ λ
λ λ λ λ

λ u t
u

λ λ λ λ
λ u t

λ u λ u u
λ λ λ λ

λ u t

( ) 1 ( ( ) ( ) )
( )( )

exp( ( ) )

( )( )
exp( ( ) )
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where u is the arriving rate of the random shocks and λi is the failure
rate of component S after the ith shocks = +λ λ (1 ɛ)i S

i.
To compute the complicated integrals in Eq. (10), an accurate ap-

proximation method, the trapezoidal integration method [33, 34], is
applied in this paper and shown as,

∫ ∑− ≈ −

+ − −
=

+ + +

q τ θ t τ dτ q τ θ t τ

q τ θ t τ τ τ

( ) ( ) 1
2

[ ( ) ( )

( ) ( )][ ]

t
i k k j

i

n

i k i k j t

i k i k j i i i

0 , ,
1

, ,

, 1 , 1 1 (13)

where the integration interval [0, t] is divided into n equal segments, so
the length of each segment is =δ t n/ . Integrating Eq. (10)–Eq. (13) into
Eq. (10), the system state transition probability θ t( )M

1,5
3 can be eval-

uated. Then, the comparison between the reliabilities of module M3 by
the proposed MC simulation procedure and the MRGP as well as the
approximation method is shown in Fig. 13.

The results in Fig. 13 demonstrate that the proposed MC simulation

procedure for the module under random shocks can provide a relatively
accurate result.

4. Reliability assessment analysis

4.1. System reliability assessment by PMS-BDD model

In Section 2.2, the complex FT model of the AOCS is simplified as
the modularized FT model and all the bottom events of the modularized
FT are independent on each other. Then, the system reliability can be
evaluated by the widely used PMS-BDD model. Considering the phase
dependence by the phase algebra proposed in Ref. [6], the system re-
liability of the phased AOCS can be evaluated by the PMS-BDD model
by several steps that are described as follows:

Step 1: transit the FT model of each phase into the corresponding
BDD model of each phase. The BDD models for the four phases of the
AOCS are shown in Fig. 14.
Step 2: integrate the BDD models for phases into the system BDD
models by the PMS-BDD method. There are two kind of sort orders
in the PMS-BDD, the backward PDO and the forward PDO. And
through the backward PDO, the system BDD model is much smaller.
By the backward PDO and taking the order M14<
M13<M12<M11<M24<M23<M22<M21<M34<M33
<M32<M42<M53. Then, the system BDD models in the first two
phases, in first three phases and in all four phases is shown in
Fig. 15(a)–(c), respectively.
Step 3: according to the system BDD models shown in Fig. 15, we
can get the disjoint paths for the ACOS in phase 1 (η1), in the first
two phases(η2), in the first three phases(η3) and in all four phases are
(η4),

⎧

⎨
⎪

⎩
⎪

=
=
=
=

η M M
η M M M M
η M M M M M
η M M M M M

1 2
1 2 3 4
1 2 3 4 5
1 2 3 4 5

1 1 1

2 2 2 2 2

3 3 3 3 2 3

4 4 4 4 2 3 (14)

Step 4: integrate all the reliability indices of the module reliabilities
and include the dynamic and static modules. As a result, the system
reliability in different phases can be evaluated as,

Fig. 11. The state transition diagram for component S under finite shocks.

Fig. 12. The state transition diagram for M3 under finite shocks.

Fig. 13. The comparison of module M3 under finite random shocks by different
methods.
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where = ∑ =T Ti i1
4 .

4.2. Results

4.2.1. Comparison with the system without shocks
The MC simulation of the system mission profile was performed

with 2×105 histories in this paper. The system reliability of the phased
AOCS considering random shocks is represented as the dashed line in
Fig. 16. Moreover, the reliability of the same system without random
shocks is represented as the solid line in Fig. 16. The reliabilities of the
AOCS at the end of each phase are also shown in Table 2, as well as the
relative difference between the reliabilities with and without random
shocks.

As expected, when the AOCS travels a long time in the outer space,
the system reliability is lower than that when considering random
shocks, especially in phase 3 and phase 4. If the random shocks are not
considered in the modeling, the system reliability will be over-
estimated.

4.2.2. Model confidence
In this section, following the proposed MC simulation procedure,

the reliability of the AOCS under infinite shocks and without shocks are
evaluated. To assess the confidence of the estimated AOCS reliability
under infinite random shocks, the system reliability evaluation by the
MC simulation procedure are repeated for =N 200 times and the results
are shown in Table 3.

With the system reliabilities at different time shown in Table 3, the
mean reliabilities values at different times are shown as the solid line in
Fig. 17. The upper and lower bounds of the 95% confidence of the re-
liability values at different times are represented as dashed lines in

Fig. 14. The modularized BDD model for each phase of the AOCS.

Fig. 15. The system BDD models for different phases.

Fig. 16. The reliability of the AOCS with and without random shocks.
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Fig. 17, respectively. Consequently, it can be concluded that the pro-
posed MC simulation method can provide accurate results with 2× 105

realizations.

4.3. Sensitivity analysis

In this paper, the effect of random shocks to the PMS is studied.
With respect to the random shocks modeling, we have analyzed the
sensitivity of the system reliability estimates to two parameters which
are related to the random shocks effect, the random shocks occurrence
rate = −u days[1/4, 1/6] 1 and the relative increment in the transition
rates =ɛ [0.2, 0.4] . The estimated system reliabilities at the end of for
different combinations of the two parameters are shown in Fig. 18.

According to the results in Fig. 18, it can be seen that with the in-
crease of the relative increment ɛ or the random shocks occurrence rate
u, the system reliability decreases as expected. Higher ɛ leads to larger
components’ failure rates, and larger occurrence rate u values result in
more random shocks over the whole lifetime, which also decreases the
system reliability. In Table 4, the system reliability with parameters

=ɛ 0.2 and = −u days1/4 1 is set to the standard and other elements are
differences with different parameters combination. As shown in
Table 4, when the same percentage of variation applies to two para-
meters, ɛ is more influential than u on the system reliability.

5. Conclusions

In this paper, an original reliability model of a PMS subjected to
random shocks has been proposed together with a MC simulation
procedure for its assessment. Dynamic behaviors, like the cold standby,
and different lifetime distributions due to different component types are

Table 2
The results for the AOCS with and without random shocks.

Phase 1 Phase 2 Phase 3 Phase 4

R t( )sys
noshock 0.999990 0.999624 0.97885 0.973937

R t( )sys
shocks 0.999988 0.999613 0.95980 0.948101

Relative difference 1.5000–06 1.1002e−05 0.0198 0.0272

Table 3
The reliabilities for the AOCS under random shocks.

Time (days) 0 0.1 0.2 …… 39

Rsys
shocks

,1 1 1.000 1.000 …… 0.9429

Rsys
shocks

,2 1 1.000 1.000 …… 0.9431

…… …… …… …… …… ……

=Rsys N
shocks

, 200 1 1.000 1.000 …… 0.9426

Fig. 17. The upper and lower bounds of the 95% confidence of the proposed
MC method with 2×105 realizations.

Fig. 18. The reliability of the phased AOCS with and without random shocks for different combinations of u and ɛ.

Table 4
The errors of the results for the AOCS sensitivity analysis.

System reliability
error

0.2 0.23 0.26 0.29 0.32 0.35 0.4

0. 247 0% 0.45% 0.98% 1.46% 1.93% 2.42% 3.05%
0.227 0.45% 0.84% 1.31% 1.82% 2.21% 2.65% 3.23%
0.212 0.87% 1.27% 1.66% 2.10% 2.55% 2.85% 3.39%
0.197 1.27% 1.65% 2.03% 2.38% 2.81% 3.07% 3.55%
0.182 1.65% 2.02% 2.35% 2.66% 3.04% 3.25% 3.68%
0.167 2.19% 2.48% 2.74% 3.01% 3.28% 3.52% 3.87%
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considered during the modeling.
A practical engineering case, the AOCS in the spacecraft, is used as a

case study. To evaluate the system reliability under infinite random
shocks effect, a Monte Carlo simulation procedure is proposed. The
proposed MC simulation procedure is certified by a dynamic module
under finite random shocks. The comparison of the reliability of the
system considering the random shocks effect or not confirms the im-
portance of the random shocks effects on the system reliability. At last,
the sensitivity analysis involving the parameters that affect the random
shocks effect is also carried out to characterize the influences of the
random shocks model parameters.

In this paper, only the constant components’ lifetime parameters
provided by the designers are used to evaluate the reliability of PMS
under random shocks. However, in reality, the uncertainties of these
parameters have significant effects on the robustness of the system
model as well as the system reliability, so this will be part of our future
work. On the other hand, the shocks arriving rate may not always
follow the homogeneous Poisson process: how to model and assess the
system reliability under different random shocks arriving rate process
will be another topic of our future research.
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