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The rapidly increasing pace and continuously evolving reliability requirements of new products have
made life cycle reliability assessment of new products an imperative yet difficult work. While much
work has been done to separately estimate reliability of new products in specific stages, a gap exists in
carrying out life cycle reliability assessment throughout all life cycle stages. We present a Bayesian
model updating approach (BMUA) for life cycle reliability assessment of new products. Novel features
of this approach are the development of Bayesian information toolkits by separately including
“reliability improvement factor” and “information fusion factor”, which allow the integration of
subjective information in a specific life cycle stage and the transition of integrated information
between adjacent life cycle stages. They lead to the unique characteristics of the BMUA in which
information generated throughout life cycle stages are integrated coherently. To illustrate the approach,
an application to the life cycle reliability assessment of a newly developed Gantry Machining Center

is shown.

© 2013 Published by Elsevier Ltd.

1. Introduction

Modern industrial societies have been characterized by the
ever-increasing pace of new products appearing on the market.
There is also an ever-increasing reliability requirement for these
newly developed products. To deliver a new product with high
reliability, it is necessary for the companies/manufacturers to
track and manage its reliability throughout its life cycle. This
requires coherent reliability assessment of the new product as life
cycle stages move on. Accordingly, a life cycle reliability assess-
ment approach is needed to cope with the rapidly increasing pace
and continuously evolving reliability requirements of new pro-
ducts. Generally, the life cycle reliability assessment of a new
product requires effective use of different types of data and
information available throughout the life cycle. However, as the
advancement of modern technology and the aggravation of
market competition continue, available data for reliability assess-
ment of a new product are extremely sparse and sometimes
contain subjective information. As a result, it is impossible to
obtain an accurate estimation of reliability using classical meth-
ods, which generally pertain to large sample sizes or abundant
reliability data.
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Alternatively, the Bayesian method is becoming more accepted
in reliability engineering. Numerous articles have discussed the
reliability assessment with different data types and reliability
information, which form the foundation of life cycle reliability
assessment. Walls and Quigley [30], Seth [29], Yadav et al. [37], and
Augustine et al. [2] have proposed specific methodologies to
deal with subjective information in reliability assessment. Hamada
et al. [14], and Graves et al. [13] developed hierarchical Bayesian
methods for assessing system reliability with multilevel binomial
data. Huang et al. [16], Briand and Huzurbazar [5], Xu and Tang
[36], Zhong et al. [39], and Reese et al. [27] have presented models
and approaches for reliability assessment with lifetime data for
different system structures subjected to various reliability infor-
mation situations. Furthermore, Ching and Leu [6] developed a
framework for estimating time-varying reliabilities with condi-
tion-state data sets. Wang et al. [32] presented a Bayesian updating
mechanism to deal with reliability assessment with evolving,
insufficient, and subjective data sets. Wilson et al. [33] and
Anderson-Cook [1] described Bayesian approaches for reliability
assessment of complex systems by combining multilevel hetero-
geneous binomial data, lifetime data, and degradation data.

These models and methodologies have formed a solid founda-
tion for life cycle reliability assessment of new products. Further
adopting the Bayesian approach for reliability assessment of new
products in different life cycle stages, the following papers have
appeared in the literature. Yadav et al. [38] proposed a framework
for capturing subjective information from different sources for
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reliability assessment in the development stage of new products.
Johnson et al. [19] applied the hierarchical Bayesian model to
assess the reliability of complex products in the early in-service
stage. Xing et al. [35] proposed a dynamic Bayesian evaluation
method for reliability evaluation of a binomial system throughout
the development stage. Quigley and Walls [17] proposed a
coherent inference framework for reliability estimation during
the product development stage by considering both Bayes and
empirical Bayes inferences. Considering the Bayesian method in
the study of product life cycle, Ho and Huang [15] presented a
Bayesian decision model to assist the optimal life decision for new
products during the life cycle.

These papers concentrated exclusively on specific life cycle
stages for particular types of products. However, little atten-
tion has been given to the life cycle reliability assessment of
new products. Traditionally, product reliability assessment in a
specific life cycle stage is investigated, e.g., the development stage
(Yadav et al., [38]) and the early launch stage (Johnson et al., [19]).
Each of these methods is effective in a specific life cycle stage for
particular types of products. However, when dealing with life
cycle reliability assessment of new products, the applications of
these methods face difficulties, and there is no systematic
approach reported. Since the existing methods are based on
different assumptions for different types of products, they can
hardly be combined, and the information obtained in different life
cycle stages can hardly be integrated. Moreover, this inconsis-
tency between these models may lead to inaccurate estimations
and result in poor design or unnecessary investment for new
products.

In this paper, a comprehensive Bayesian model updating
approach (BMUA) is proposed to deal with life cycle reliability
assessment of new products. The BMUA consists of an informa-
tion integration framework, two Bayesian information toolkits,
and the corresponding Bayesian reliability models. Three critical
aspects are highlighted in the proposed BMUA: (1) life cycle
stages are investigated as a whole; (2) reliability models devel-
oped in different life cycle stages are interrelated; and (3) infor-
mation generated in different life cycle stages is integrated and
transited comprehensively under the information integration
framework with the Bayesian models and information toolkits.

The paper is organized as follows. The general Bayesian model
updating approach is presented in Section 2 with specific descrip-
tions of the framework and critical steps. Two indispensable
information toolkits for the BMUA are developed in Section 3.
In Section 4, an application example of the proposed BMUA
is illustrated for the life cycle reliability assessment of a newly
developed Gantry Machining Center. We then summarize the
proposed BMUA in Section 5.

2. A general Bayesian model updating approach

The life cycle of a new product consists of multiple stages. In
particular, the electronic and manufacturing industries have
demonstrated the multiple-stage nature of product life cycles.
We note that there are many ways to define the multiple stages of
a new product’s life cycle (Yang, [40]; Murthy et al, [21]). Both
marketing literature [11] and production literature have devel-
oped relative ways to deal with the multiple life cycle stages for
particular problems, e.g., Cooper and Kleinschmidt [9] and Cohen
et al. [10]. For the purpose of this paper, the life cycle is divided
into three major stages. Our interest is in constructing a general
methodology for life cycle reliability assessment of new products.
We are especially concerned with building the BMUA framework,
integration of information in each life cycle stage, and transition
of integrated information between different life cycle stages.

2.1. Multi-stage product life cycle

In the field of reliability engineering, product life cycle is
interconnected with the development process, status, and relia-
bility requirements of a product. It can be divided into multiple
stages based on particular perspectives of reliability engineering
(Yang, [40]). For example, to specify the reliability for new
product development, Murthy et al. [21,22] developed a new
model of product life cycle in which the life cycle was divided into
eight phases and grouped into three stages. Similarly, targeting on
the life cycle reliability assessment in this paper, the product life
cycle is divided into three stages. Each stage is defined according
to the status of the product, work contents, techniques, and
available data/information for reliability assessment. Fig. 1 pro-
vides a pictorial representation of the product life cycle. The
definitions of particular stages are presented below.

Stage I (Predevelopment): As described in Fig. 1, this stage is
concerned with a non-physical conceptualization of the product.
No physical prototype is built for testing. Major considerations in
this stage are analysis, evaluation, and comparison of potential
design options and determining the final design of the product.
Technologies for product design and assessment are implemented
through computational modeling and simulation. Specifically,
computer added engineering (CAE) technology is used for design
and preanalysis of the product, encompassing simulation, valida-
tion, and optimization of the product. It provides information to
support performance assessment and decision-making. As a result,
reliability information in this stage mainly includes the knowledge
and experience of experts gained through CAE technology, and the
outputs of computational modeling and simulation, e.g., a stress
analysis of components using finite element analysis (FEA). The
historical data of existing similar product are also included as prior
information in this stage. Reliability assessment of the product
mainly depends on subjective information and available simulation
data gathered from the design tools or techniques.

Stage II (Development): This stage deals with the physical
embodiment of the product through research, development, and
prototyping. Both the component and product prototypes are
built. Major objectives at this stage are improving design and
verifying that the desired performance is met through testing,
problem detecting, and design improvement. Major technologies
used include environmental tests, reliability tests, and preproduc-
tion demonstrations. Among these tests, the environmental test,
environmental stress screening test, reliability growth test, accel-
erated life test (ALT), and accelerated degradation test (ADT) are
closely related to the reliability assessment of the product. CAE
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Fig. 1. Life cycle definition of a new product from the perspective of reliability
assessment.
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is also implemented to utilize the experience and knowledge of
experts. Reliability assessment in this stage mainly depends on
data collected from reliability tests. The knowledge and experi-
ence gathered by experts and the outputs of the model for
reliability assessment in the predevelopment stage are also
included as prior information.

Stage Il (Postdevelopment): This stage is concerned with the
remainder of product life cycle, which includes production and
support of the product. Two major obligations at this stage are
retaining the designed-in performance during production and
maintaining the in-service performance throughout the warranty
phase. Statistical process control, acceptance inspection and
testing, built-in monitoring, and maintenance optimization tech-
niques are implemented in this stage. Failure reporting, analysis,
and corrective action system (FRACAS) is used to construct the
reliability database for the product with the information gathered
via these techniques. Accordingly, reliability assessment in this
stage mainly depends on the data sets collected by the FRACAS
and relative maintenance records. The information transited from
the development stage is also integrated in this stage as prior
information for reliability assessment, which includes the outputs
of the model for reliability assessment in the development stage
and knowledge and experience obtained by experts throughout
the development of the product.

111

2.2. The proposed Bayesian model updating approach

The general Bayesian model updating approach (BMUA) con-
sists of an information integration framework and three Bayesian
models. Fig. 2 depicts a descriptive framework of the general
BMUA. The information integration framework is demonstrated
by the arrows of information flow, which is a coherent flow for
information integration and transition throughout the life cycle.
Three Bayesian models are highlighted in the rectangles with
rounded corners, which are the information processor and relia-
bility estimator in the life cycle stages. The information available
in each life cycle stage is integrated and transited under the
information integration framework, which is carried out by
updating these Bayesian models throughout the life cycle stages.
Reliability assessment of the product throughout the life cycle is
based on the Bayesian model in each life cycle stage.

2.2.1. The information integration framework for the BMUA

As depicted in Fig. 2, the available information in each life
cycle stage includes subjective information and objective infor-
mation. The contents of information vary from stage to stage.
The information integration framework integrates both types of
information in different life cycle stages and accommodates the
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flow of information between these stages. Fig. 3 depicts a simple
information integration framework.

Suppose that a reliability model is chosen for the product.
First, the subjective information and field data in stage A are
integrated by constructing Bayesian model A. This is a process of
information integration in the framework. During this process,
the subjective information is quantified to the prior distribution
of model parameters. The derived prior distribution is then
updated by the field data available in stage A using the Bayesian
theory. After the information is integrated in stage A, an informa-
tion connect is constructed between these two adjacent stages.
This is a process of information transition between adjacent
stages in the framework. A model updating strategy is applied
to fulfill this information transition. This model updating strategy
gradually reduces the uncertainty in model A and replaces it with
a more precise one (model B) as more detailed information is
obtained. This is accomplished by incorporating the outputs of
model A and the knowledge gained in stage A with the field data
in stage B using the Bayesian method. The data and information
from stage A are transited as the prior information in stage B. The
updated Bayesian model (model B) is constructed based on this
transited prior information and the available field data in stage B.
Meanwhile, these Bayesian models in different life cycle stages
are suggested for the reliability estimation when they are built.

In short, the information generated throughout the life cycle
stages is gradually integrated, transited, and accumulated by
constructing and updating the Bayesian models. Within the
information integration framework, two critical aspects are
handled specifically in this research: (1) quantifying the subjec-
tive information into prior distribution of model parameters in a
specific stage; and (2) transiting the integrated information from
one stage to the next stage for prior derivation. These lead to
development of two toolkits for the BMUA in Section 3.

2.2.2. The Bayesian models for the BMUA

As mentioned earlier, the available information in each life cycle
stage includes knowledge and experience of experts, historical data
of similar existing products, and field data obtained in that stage.
To use such information for reliability assessment of the product,
Bayesian models are constructed within the framework of the
BMUA. These models act as information integrators and reliability
estimators in the BMUA. Meanwhile, the implementation of the
information integration framework discussed above is also based
on the derivation and formulation of these Bayesian models.

Generally, let a random variable T with probability density
function f(t;0), 6 ® denote the lifetime of a product. Mathema-
tically, the Bayesian theory can be expressed as

(T |0) m(0)

p(OITs) = Tol(Ts|0)m(@)do

1
where 7(0) is the prior distribution, which describes the quanti-
fied subjective information in a specific stage before any field data
of T; is obtained. This information is contained in the subjective
information boxes in Fig. 2. I(T;|0) is the likelihood function,
which describes the objective information obtained in that stage.

It is related to the specific reliability model in that stage. This
information is contained in the objective information boxes in
Fig. 2. p(0|T;) is the posterior distribution of model parameters,
which describes the integrated result of the subjective informa-
tion 7(0) and the objective information I(T|0).

For a specific life cycle stage in Fig. 2, suppose f(t;0), 0€® is
chosen as the reliability model in this stage. The subjective
information describes prior knowledge about the product, includ-
ing knowledge and experience of experts, historical data of
similar existing products, and even the posterior distributions of
the previous model. This subjective information is quantified as
the prior distributions of model parameters. When field data are
obtained, the prior knowledge is updated with these field data
using the Bayesian theory. A Bayesian model for this stage is
constructed based on this prior distribution and field data as
Eq. (1). The subjective information and objective information are
integrated through this Bayesian model and depicted by the
posterior distribution. Reliability assessment of the product in
this stage is obtained based on this posterior distribution p(6|Ts)
and the related reliability model f{(t;0), 0e®.

To adopt the Bayesian theory in the life cycle reliability
assessment in this paper, two aspects are emphasized in different
life cycle stages: (1) derivation of the prior distribution, and
(2) formulation of the Bayesian model for reliability assessment.
Since the formulation of the Bayesian model is a case-based
process that relates to the choice of reliability model and the
specific form of prior distribution, details for this aspect are
demonstrated in the case study. The derivation of prior distribu-
tion corresponds to the two critical aspects highlighted in the
subsection above. These aspects collectively lead to the develop-
ment of the two toolkits in Section 3.

2.3. Critical steps for the BMUA

To implement the BMUA presented above, the following steps
are taken.

Step 1: Identify the reliability index throughout the life cycle
stages.

Because reliability characteristics of different products vary a
lot, different reliability indexes will be investigated through-
out their life cycles. Generally, the reliability index for a new
product is chosen according to the evaluation criteria of
product performance or based on contractual agreements
between customers and manufacturers, such as the MTBF for
the repairable products (e.g., [4]), MTTF for the non-repairable
products, and the failure probability or failure rate for one-
time use products (e.g., [19]).

Step 2: Select a reliability model for the product in the
predevelopment stage, gather subjective information and
objective information for reliability assessment.

The reliability model in this stage is chosen according to the
reliability indexes one is interested in and the specific infor-
mation available in the predevelopment stage. For instance, if
the reliability index in question is MTBF and the available
information is lifetime data, a lifetime model such as expo-
nential distribution, Weibull distribution, or lognormal distri-
bution can be chosen. Meanwhile, gathering subjective
information should be compatible with the reliability model
chosen in this stage. It is a process that considers what
information is available and whether this information can be
related to the reliability indexes. Some representative sources
of information are described in the definition of life cycle
stages in Section 2.1 and Fig. 1.

Step 3: Quantify the knowledge and experience gathered from
experts, derive prior distribution, construct Bayesian model 1,



W. Peng et al. / Reliability Engineering and System Safety 112 (2013) 109-119 113

and then carry out the reliability assessment in the predeve-
lopment stage using model 1.

Because field data are sparse in the predevelopment stage, the
prior distribution derived from subjective information has a
remarkable effect on estimation in this stage. To handle the
subjective information quantification, an information integra-
tion toolkit is developed for the BMUA in Section 3. Construc-
tion of the Bayesian model 1 and assessment of the product
are implemented based on the Bayesian procedure described
in Eq. (1).

Step 4: Choose a reliability model and gather reliability
information for the development stage.

This step is similar to Step 2. However, the subjective informa-
tion in this stage should include the outputs of Bayesian model
1 and the knowledge and experience of experts generated in
the predevelopment stage. An information transition is con-
structed between two adjacent stages as described by the
information flow in Fig. 2.

Step 5: Quantify the subjective information gathered in the
predevelopment stage, derive the prior distribution according to
the quantified subjective information and outputs of model 1,
construct Bayesian model 2, and then carry out the reliability
assessment of the product in the development stage using
model 2.

In this stage, two kinds of prior information should be combined
coherently: subjective information from the predevelopment
stage and outputs of Bayesian model 1. Both kinds of prior
information are transited from the previous stage, but in
different forms via different ways. An information transition
toolkit is developed for the BMUA to integrate these kinds of
information in Section 3. The construction of the Bayesian model
2 and the reliability assessment are based on the Bayesian
procedure described in Eq. (1).

Step 6: Choose a reliability model for the product in the
postdevelopment stage and gather subjective information
and objective information.

This step is similar to Step 4. The subjective information in this
stage should include the outputs of the Bayesian model 2 and
the knowledge and experience of experts generated in the
development stage as depicted in Fig. 2.

Step 7: Similar to Step 5, quantify subjective information,
derive prior distribution, construct the Bayesian model 3, and
carry out the reliability assessment in the postdevelopment
stage using model 3.

Major differences between steps 7 and 5 are the details of the
prior information and field data as illustrated in Fig. 2. The
basic process and technique are similar to step 5.

Step 8: Keep updating the reliability assessment of the product
using model 3 when new field data are available in the
postdevelopment stage.

The available data in the postdevelopment stage is evolving
with the progress of product monitoring and maintenance as
the life cycle moves on. When new field data are obtained, the
estimation results should be updated. This is implemented by
re-executing step 7 with new prior distribution and field data.
The new prior distribution is obtained using the information
transition toolkit by substituting outputs of the Bayesian
model 2 in step 6 with the outputs of the Bayesian model
3 in step 7. The field data are the new data sets available in
this stage.

3. Bayesian information toolkits for the BMUA

Clearly, derivation of prior distributions is critical for the
information integration framework and Bayesian models in the

proposed BMUA. Both Fig. 2 and the steps of the BMUA highlight
that the connection between adjacent life cycle stages is con-
structed through a coherent information transition. This is imple-
mented by derivation of prior distributions for the Bayesian
models through quantification, integration, and transition of
subjective information throughout the life cycle. Accordingly, an
information integration toolkit and an information transition
toolkit are developed for the BMUA in this section.

3.1. Information integration toolkit

An information integration toolkit is constructed to deal with
the derivation of prior distributions with the subjective informa-
tion highlighted in Fig. 2. It is developed by defining an inter-
mediate quantity and incorporating the probability encoding
methods with transformations of random variables. Specifically,
three critical aspects are involved in the procedure of this toolkit:
(1) systematically eliciting subjective data from subjects (e.g.,
knowledge and experience of experts) in which an intermediate
quantity is defined, (2) modeling the subjective data with statis-
tical distributions in which the probability encoding method is
used, and (3) combining this statistical distribution with the
information of historical data in which the transformations of
random variables are used.

As demonstrated in Fig. 2, the prior information in each life
cycle stage is composed of subjective information of experts,
historical information of existing products (e.g., existing similar
products, virtual products, and prototypes), and the outputs of
previous models. The information integration toolkit is developed
for deriving prior distribution with the former two sources of
prior information. These two sources are interconnected, and both
are subjective representations of the product characteristics.
Generally, subjective information of experts is obtained as opi-
nions/judgments assigned for a meaningful and representative
quantity of a product [34]. Meanwhile, the historical information
of existing products is in the form of the reliability index of
interest, such as the MTBF of existing products. Accordingly, the
opinions/judgments of experts about newly developed products
are delivered through their subjective comparisons of the relia-
bility indexes between the newly developed products and exist-
ing similar products. To elicit the subject data of experts through
this kind of subjective comparison, an intermediate quantity
called the reliability improvement factor Ag; is introduced.

RIN—RIg
RIg

where Rl is the reliability index of the new product chosen at
step 1 of the BMUA as described in Section 2.3 and RIg is the
reliability index of existing products, which is a constant derived
from historical data of similar products.

The reliability improvement factor is a measure of the relia-
bility difference between new products and existing products. It is
defined through the ratio of reliability difference between these
two types of products against the reliability of the existing
products. It is a quantitative description of the extent of the
difference between these types of products. The reason for
introducing this intermediate quantity lies in the fact that sub-
jective information of experts is elicited through their judgments
on this quantity, which is a direct and meaningful way of elici-
ting subjective data from subjects. Meanwhile, a connection is
naturally constructed between the subjective information of
experts and the historical information of existing products
through Eq. (2).

To systematically elicit subjective data from experts and
quantify the reliability improvement factor, the probability
encoding method [31] is adopted. This method employs an

AR = 2
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interview process based on a series of questions, for which the
answers can be represented as points on the cumulative distribu-
tion function of the quantity surveyed. In this paper, the experts
are required to respond by specifying points on the probability
scale for fixed values of the reliability improvement factor (e.g.,
a probability of 0.35 is assigned for the fixed value Jz;=0.1 by
experts, meaning the probability P(Ag; <0.1)=0.35). When the
interview process is finished, a group of cumulative probability
values for fixed values of the reliability improvement factor is
obtained. By fitting these subjective data to a probability dis-
tribution, the probability distribution of reliability improvement
factor is obtained as 7(/g;).

To obtain the prior distribution for the Bayesian model, the
distribution 7(Ag;) should be transformed to the probability
distribution of the model parameter. The method for transforma-
tions of random variables is used to map the distribution of the
reliability improvement factor into the prior distribution of model
parameter. Suppose the parameter of the reliability model is 6.
The reliability index under this model is described by the func-
tional relationship between Ry and 0 as RIy=r1(6). By substituting
this function into Eq. (2), the functional relationship between Ag,
and 6 is obtained as Ag;=g(60). Given the probability distribution of
Arp, the prior distribution of the parameter 6 is generated through
the methods for transformations of random variables ([28], p. 59),
as following.

dz Rl

() = 13, &O) |15 3)

where 7, (Ag;) is the probability distribution of the reliability
improvement index g, g(0) is the functional relationship
between the parameter 6 and Ag; under a specific reliability
model, 7,,(g(0)) is the distribution obtained by substituting Ag
in the distribution 7, (/z;) with function g(6), and |dAg/df)| is the
associated Jacobian of the transformation.

A further demonstration of the information integration toolkit
will be presented in Section 4.1. For more details about the
probability encoding method, please refer to Wallsten and
Budescu [31] and O’Hagan et al. [24]. As discussed, the informa-
tion integration toolkit is developed specifically for the BMUA in
this paper. It is important to mention that the proposed BMUA
can be extended to broader applications with a practical case-
based choice of methods for prior derivation using subjective
information. For more information related to the prior distribu-
tion elicitation with subjective information, please refer to
the works by Bedford et al. [3], Gutierrez-Pulido et al. [12], and
Seth [29].

3.2. Information transition toolkit

As discussed, the subjective information in a life cycle stage is
quantified separately. The presence of more than one prior
distribution on one model parameter occurs quite naturally under
the proposed BUMA framework (e.g., for the model parameters in
the development stage, we have the first group of prior distribu-
tion generated through the information integration toolkit and
the second group obtained from the outputs of previous Bayesian
model). The information transition toolkit is developed to com-
bine these distributions into a single prior distribution for the
model parameters. It is developed by incorporating the Bayesian
Chi-squared test with the linear opinion pool method. Specifi-
cally, the linear opinion pool method is used as the basic combing
framework, which is a weighted linear combination of the prior
distributions. An information fusion factor is defined to quantify
the weights for the linear pooling. Meanwhile, the Bayesian Chi-
squared test is used to determine the information fusion factor.
The weakness of the linear opinion pool method on weight

determination is eliminated by implementing the Bayesian Chi-
squared test on each prior distribution against the field data in
the present stage.

As demonstrated in Fig. 2, the information gathered in the
previous stage is passed to the present stage for prior derivation.
It includes the outputs (posterior distributions) of the previous
Bayesian model as m;(0) and subjective information integrated
using the information integration toolkit discussed above as m5(0).
Under the proposed BMUA, the linear opinion pool method is
used to combine these two groups of prior distributions. It is one
of the most widely used formal approaches for combining prob-
ability distribution in the field of expert judgments [8,7]. It is
given as

7(0) = Airm1(0) + (1= Aip)72(0) “4)

where 71(0) and m,(60) are the individual priors, /;r and 1— ;¢ are
the weights assigned for the corresponding two priors, and 7(0)
represents the combined probability distribution.

Given the two groups of prior distributions 71(0) and 75(0), the
weights for these distributions are defined through the introduc-
tion of an information fusion factor as

Bl

FiE ®)

)LIF
where B}, and Bﬁ are the Bayesian model fitting factors for the
prior distribution 7,(0) and m,(0), respectively. Both are defined
based on the Bayesian y? goodness-of-fit proposed by Johnson
[18]:

Let Ts=(ty,t2,t3,....t,) denote the field data in this stage with
cumulative distribution function F(t;0). Let 0=ag < a; < ... < ax=1
denote K equally spaced quantiles from a uniform distribution,
and define pj=a;—a;_; and K = n®*, where n is the sample size of
the observation Ts. Let m](H) j=1,..,K denote the number of
observations t;, i=1,..,n that fall into the interval [a;_4,q;], for
which a;_; <F(t;|0) < a;, and 0 is a random sample from the prior
distribution 7(0). The Bayesian Chi-squared test statistic for the
random sample is defined as

K 2
RED) = Z (0) ””J) (©)

For large n, the distribution of RP(0) follows the Chi-squared
distribution with K—1 degrees of freedom. Based on the above
Bayesian Chi-squared test statistic, we define B, as

0
B,=Pr (Z (my0)=np;) < Xzz<_1.o.95> )

T

where y%_; oo5 is the 0.95 quantile of the reference Chi-squared
distribution with K—1 degrees of freedom and Pr(A) is the
probability of event A.

The idea of this toolkit is that B, is a measure of the prior
distribution fitting to the field data in each stage. The prior
distribution that fits the field data more closely will result in a
bigger B, value. A higher weight will be assigned to this prior
distribution in the linear weighted pooling. Accordingly, the
combined prior distribution inherits the major belief of these
two types of prior distributions and maintains the characteristics
of the relevant field data.

A further demonstration of the information integration toolkit
will be presented in Section 4.2. It is important to mention that
this toolkit is developed specifically for the BMUA framework,
which is intended to be easily understood and used for practical
engineering. There may be a seemingly larger variance involved
through the framework of linear opinion pool; however it is the
direct effect of combining multiple sources of prior information
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Table 1
The subjective information in the predevelopment stage.

Prior information derived from the warranty data of similar GMCs
MTBF of existing similar GMCs 563 (h)
95% percentile interval of the shape parameter 3 [0.75,1.83]

Judgments of experts for the reliability improvement index Ag,

Fixed values of g 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cumulative probability values 0.35 0.72 0.83 0.90 0.95 0.97 0.98 0.99
because they are divergent in a certain way. A large sample of 0 Table 2

from the prior distribution ©(0) for calculating Eq. (7) could
alleviate the effect of this enlarged variance. This information
transition toolkit can also be extended to a wide application with
a suitable choice of method for combining prior distributions. For
more information on this topic, please refer to the work of Poole
and Raftery [25], Clemen [7], and Ranjan and Gneiting [26].

4. A case study

A newly developed Gantry Machining Center (GMC) by com-
pany M is used to demonstrate the application of the BMUA. To
launch a newly developed GMC with high reliability, company M
needs to track and manage the reliability of the GMC throughout
its life cycle. In this section, the BMUA procedure is carried out
stage by stage for the life cycle reliability assessment of the newly
developed GMC to illustrate its application in detail.

4.1. Reliability assessment of the GMC in the predevelopment stage
(steps 1-3)

First, the MTBF is specified as the reliability index and the
Weibull distribution is chosen to model the lifetime distribution
of the GMC, as T ~weibull (f,5). The prior information and the
field data about the GMC are given in Tables 1 and 2, in which the
field data are collected from the reliability simulation of the GMC
during the design process.

Next, the information integration toolkit is adopted to derive
the prior distribution with the subjective information given in
Table 1. The subjective data for the reliability improvement index
are fitted to a beta distribution as Az ~beta (1.86,10.2). A uniform
distribution on the 95% percentile interval of the shape parameter
is specified as the prior distribution of the shape parameter as
p ~uniform (0.75,1.87). It can incorporate information from
existing similar products and maintain the diffusion of the prior
distribution for the shape parameter.

The scale parameter # can be derived by combining the
probability distribution of the /g and the prior distribution of
f through the relationship described in Egs. (2) and (3), where RIg
is the MTBF of the existing GMC with Weibull distribution.

MTBEy = nI"(1+ (1/8)) = (1 + Ax)MTBFg

n(n)::n(n(im,ﬁanhﬂ)anRhﬁ>::7%%%5%3%3

With the derived prior distributions and the field data given in
Table 2, the Bayesian model in this stage is constructed as

x 563 ®)

I(T4|p.m)m(B.n)
N|T1) = 9
p(piT) I g, p> 5, W(Ta | Bon) 7 (Bon)ddn ©
n>0
where p(f,n7|T;) is the joint posterior distribution for the model

parameters, [(T1|f8,#) is the likelihood function of field data Tj,
which is a product of the density function of Weibull distribution

The objective information in the predevelopment stage.

Time between failures of the GMC T; (h)

71 1882 1215 268 132 681 986 421
2038 1790 74 640 212 923 386 112

at each failure point given in Table 2, and 7(f3,77) denotes the joint
prior distribution of the model parameters derived above, which
does not have an analytical form but can be sampled using the
Monte Carlo method following Eq. (8). The interval 5, > > f31,
1 > 0 indicates the derived intervals for the model parameters in
their prior distributions.

Since the posterior is complicated and no close form expression
can be obtained, the MCMC methods are used to generate samples
from the posterior. The assessment of the MTBF is implemented
through sample-based posterior analysis by substituting the gen-
erated samples (3,7}) intoMTBFy = nI'(1+(1/p)). In this study,
20,000 representative samples are generated from the posterior
distribution, and the samples for the MTBF are obtained as well.
These samples are summarized in Table 3. The generated samples
are fitted to approximate distributions as fitted posterior distribu-
tions in Table 3 to deliver an intuitional view.

4.2. Reliability assessment of the GMC in the development stage
(steps 4-5)

The Weibull distribution is chosen to describe the lifetime of
the GMC in this stage. The prior information from the outputs of
the previous model is presented in Table 3 as m;(f3), m1(#). The
prior information gathered from experts and the existing product
in the predevelopment stage is incorporated using the informa-
tion integration toolkit as

T(Agr) = beta(3.28,12.33), m»(ff) = uniform(0.7891,1.4949),

702 (1) = T(Mri,B)| Ar0 ), g1 ) = F((l%%

Then, to incorporate these two kinds of prior distributions, the
information transition toolkit is used. The Bayesian %2 goodness-of-
fit B, for these two kinds of prior distributions are obtained by
simulating Eqgs. (5) and (6) with the prior distributions given above
and the field data given in Table 4, where K=3 ~n%* and n=12.
The information fusion factor in this stage is then obtained as

x 661.4 (10)

1
B =09392, B>=04997, Jp= ]BP >
Bp+Bp

—0.6527 11)

With the prior distribution and the information fusion factor
given above, together with the field data in Table 4, the Bayesian
model in this stage is constructed as

B Apl(T2| Bop) 7 (Bon) +(A=Aip)l(T2
P(Bn|T2) = I p>olrl(T2| )71 (B) +(A—2p)I(T2

n>0

B.n)ma(B.n)
B.n)ma (B.)1dpdy

12)
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Table 3
Summary statistics of the estimated results in the predevelopment stage.
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Parameters Posterior Posterior percentiles Fitted posterior distributions
Mean SD Median 2.5% 97.5%
MTBF 661.4 57.13 652.7 577.1 793.1 Lognormal (6.4907,0.0843)
B 1.097 0.1845 1.082 0.7891 1.494 Lognormal (0.0785,0.1667)
n 674.3 73.9 668.2 544.2 835.0 Lognormal (6.5078,0.1086)
Table 4
The objective information in the development stage.
Time between failures of the GMC' prototype T, (h)
97 39 1747 35 266 2030
14 11 1521 9 960 376
Table 5
Summary statistics of the estimated results in the development stage.
Parameters Posterior Posterior percentiles Fitted posterior distributions
Mean SD Median 2.5% 97.5%
MTBF 733.4 63.21 729.4 621.6 868.8 Lognormal (6.5941,0.0855)
B 0.933 0.09604 0.9275 0.7614 1.137 Lognormal (—0.0746,0.1025)
n 703.4 53.73 701.0 604.9 815.2 Lognormal (6.5530,0.0762)
Table 6

The objective information in the postdevelopment stage.

Time between failures of the GMC gathered from the users Ts (h)

450
1257

179
1197

361
1108

274
379

306
206

518
258

484
621

where p(f,5|T>) is the joint posterior distribution for the model
parameters in the development stage, I[(T>|f,7) is the likelihood
function of the field data given in Table 4, and 71(,n) and 7(f,1)
separately denote the prior distributions derived from the outputs
of the previous model and the transited information from pre-
vious stage.

Finally, the estimation is carried out by generating samples
from the joint posterior distribution using the MCMC methods,
similar to the predevelopment stage. The estimated results in this
stage are summarized in Table 5.

4.3. Reliability assessment of the GMC in the postdevelopment stage
(steps 6-7)

The Weibull distribution is chosen in this stage as well. The
subjective information includes the outputs of the previous model
given in Table 5 as my(f), m1(n) and the opinions of experts
gathered in the development stage. By adopting the information
integration toolkit and the information transition toolkit, the prior
distributions in this stage are obtained as

7(Ag)) = normal(0.04,0.01), 7,(f) = uniform(0.7641,1.137),

. 1+4
72 (1) = (Mt B)| v ), N(Arip) = ﬁ

1
B, =0.5857, Bj =0.6806, A= % =0.4625
B}+B}

x 733.4;

(13)

With these prior distributions obtained above and the field data
given in Table 6, the Bayesian model in this stage is constructed,
having the same form of Eq. (12). By adopting the MCMC method, the
estimated results of the GMC are obtained and presented in Table 7.

4.4. Model updating in the postdevelopment stage with new field
data (step 8)

When new field data are obtained in the postdevelopment stage
as in Table 8, the estimation of the GMC is updated by substituting
the prior distribution derived from the outputs of the development
stage with the outputs of the early postdevelopment stage in
Table 7. The prior distribution derived from the opinions of the
experts remains unchanged. By adopting the information transition
toolkit, the information fusion factor in this stage is obtained as

1
B =0.9532, B2 =0.8418, A= ]BP 5 =0.5301
Bp+B;p

(14)

Finally, the Bayesian model in this stage is updated with these
prior distributions and new field data, taking the same form of
Eq. (12). By adopting the MCMC method, the updated estimates of
the GMC are obtained and summarized in Table 9.

4.5. Analysis of the results

To demonstrate the effectiveness of the proposed BMUA, a model
diagnostic of the BMUA, a vertical comparison within different life
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Table 7
Summary statistics of the estimated results in the postdevelopment stage.
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Parameters Posterior Posterior percentiles Fitted posterior distributions
Mean SD Median 2.5% 97.5%
MTBF 701.4 36.57 698.2 638.9 783.7 Lognormal (6.5518,0.0515)
B 0.9849 0.06963 0.9888 0.844 1.113 Weibull (1.0170,15.4490)
n 694.2 37.55 692.3 624.9 775.4 Lognormal (6.5413,0.0537)
Table 8
The new field data in the postdevelopment stage.
The new field data of the GMC gathered from the users T3 (h)
430 41 330 102 41 232 333 761 126
576 734 943 704 695 1449 580 253 598

Table 9
Summary statistics of the estimated results with new field data.

Parameters Posterior Posterior percentiles Fitted posterior distributions
Mean SD Median 2.5% 97.5%

MTBF 691.9 29.44 688.8 643.2 760.1 Gamma (562.5758,1.2299)

B 0.9949 0.05966 0.999 0.8735 1.096 Weibull (1.0223,19.1355)

n 688.6 31.49 687.2 630.7 756.9 Lognormal (6.5336,0.0454)

cycle stages, and a horizontal comparison between different relia-
bility assessment methods are carried out in this subsection.

First, a model diagnostic is carried out for the BMUA, imple-
menting the Bayesian version of Person’s Chi-squared goodness-
of-fit test proposed by Johnson [18]. Twenty thousand samples
are generated from the posterior distributions of the model
parameters in each life cycle stage. Together with the field data
presented above, the Bayesian Chi-squared goodness-of-fit test
results for each stage are obtained. There are 22.97% of these
simulated values that exceed the 0.95 quantile of the Chi-squared
distribution in the postdevelopment stage. This suggests some
lack of model fitting by the BMUA for the early stage of the
postdevelopment stage. This is due to the domination of the
subjective information in that stage. However, it is mitigated by
the model updating with the BMUA in the postdevelopment stage
with new field data, with the new results having only 2.35%
values exceeding the same quantile under the same model
diagnostic. Furthermore, the exceeded portions of the simulated
values in the predevelopment stage and the development stage
are merely 0% and 0.14%, respectively. Accordingly, the fitness of
the BMUA for the life cycle reliability of the GMC can be verified
through this kind of model diagnostic.

We then carry out a vertical comparison between different life
cycle stages. The estimated MTBFs throughout the life cycle stage
are presented in Fig. 4. The posterior distributions obtained by the
proposed BMUA becomes more concentrated as the life cycle
stages move on, which indicates that the uncertainty of estima-
tion results are getting smaller and the corresponding precision is
getting higher. This improvement of precision is attributed to the
effectiveness of the information integration and transition of the
proposed BMUA.

To carry out a horizontal comparison, we compare the esti-
mated 95 percentile interval of the MTBF between the proposed
BMUA and the classical methods, such as the maximum like-
lihood method (MLE) and the classical Bayesian method. By using
“classical”, we mean the Bayesian method without information
transition between different life cycle stages (e.g., the methods

treat the life cycle stages separately which follow the strategies
introduced by Yadav et al., [38] and Johnson et al, [19]). The
results are presented in Table 10. The estimated intervals
obtained by the proposed BMUA are included in the ones by the
classical methods. The estimated results from these methods are
compatible, but the proposed BMUA possesses the smallest
intervals, which indicates that the proposed BMUA has the high-
est precision. A more direct comparison can be obtained from
Fig. 4, in which the posterior density of the MTBF by the BMUA
has a narrower spread than the results by the classical Bayesian
without coherent information fusion throughout life cycle stages.
Accordingly, the effectiveness of the information integration and
transition in the BMUA is verified through these vertical and
horizontal comparisons.

5. Conclusions

A Bayesian model updating approach is developed to deal with
life cycle reliability assessment of new products. The BMUA is
constructed with an information integration framework, two
information toolkits, and three Bayesian models. The information
generated throughout the life cycle stages is integrated and
transited under the information integration framework. The
Bayesian models and the information toolkits are adopted to
implement the information integration and transition throughout
the life cycle stages. The proposed BMUA is demonstrated with
the application to the life cycle reliability assessment of a newly
developed GMC. The estimated results of the BMUA are analyzed
and compared with classical methods. The effectiveness of the
proposed BMUA is demonstrated by the evolving precision of
estimated results stage by stage. It is also verified by the
comparison of the accuracy of the estimated results between
the BMUA and classical methods.

It is important to note that the case study is employed solely
for illustrative purposes. The authors have made many assump-
tions and approximations to demonstrate the proposed techniques.
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Fig. 4. Posterior distribution of the MTBF in different life cycle stages with the proposed BMUA and the classical Bayesian method.
Table 10

Comparison of the estimated MTBF between the proposed BMUA and classical methods.

Life cycle stages The BMUA The MLE Bayesian without information fusion
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
Predevelopment 5771 793.1 574.9 1104.3 518.9 1411.0
Development 621.6 868.8 587.3 1141.6 345.5 1539.0
Postdevelopment 638.9 783.7 420.2 761.4 404.0 867.3
Postdevelopment with new data 643.2 760.1 442.9 758.9 421.5 871.3
The calculation of the Bayesian models in the case study is References

implemented using the Markov chain Monte Carlo (MCMC) method
and WinBUGS software [20,23] is applied.
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