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A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs
operating under uncertainty is developed. The framework incorporates the overall uncertainties
appearing in a structural integrity assessment. A comprehensive uncertainty quantification (UQ) pro-
cedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ
methods. In addition, the factors that contribute the most to the resulting output uncertainty are
investigated and identified for uncertainty reduction in decision-making. A high prediction accuracy of
the proposed framework is validated through a comparison of model predictions to the experimental
results of GH4133 superalloy and full-scale tests of aero engine high-pressure turbine discs.
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1. Introduction

High thrust-to-weight ratios and low costs are required in aero
engine design to ensure flight safety and reliability. It means that
higher stresses and temperatures will be created by engine hot
section components such as turbine discs and blades, which are
fracture critical engine components. As a result, considerable
research has been conducted to improve materials and manu-
facturing processes to optimize component lifetime and reduce
costs. Life-cycle assessments (LCA), particularly in life-cycle pre-
diction endeavors, require damage prognostics for the health and
capability of components [1]. In dynamic environments, stresses in
engine hot section components constantly vary, making low cycle
fatigue (LCF) failure a critical issue when designing these compo-
nents [2–4]. LCF failure occurs under the influence of diverse
uncertainties such as load variations in usage, material properties,
geometry variations within tolerances, and other uncontrolled
variations. Probabilistic fatigue models are required to account for
these uncertainties. Accordingly, it is important to predict the
remaining fatigue lives of components by using a probability dis-
tribution that is robust against unavoidable variations. Probabil-
istic LCF life prediction has been extensively studied, with many
efforts implemented through either Physics of Failure (PoF)-based
x: þ86 28 6183 0227.
ng).
or data-driven techniques. This paper will focus on a probabilistic
PoF-based method using both PoF-based modeling techniques and
probabilistic techniques. Moreover, to enhance working life as well
as the structural reliability, a practical algorithm for fatigue relia-
bility analysis will be established.

Deterministic methods were introduced to improve resistance
of materials against fatigue for hot section components [5–8].
However, the fatigue process is usually random in nature. Typi-
cally, component usage and material properties are probabilistic,
meaning that the fatigue resistance of a component under a par-
ticular loading regime is difficult to guarantee. Evaluating the
variability of the problem enables us to evaluate the risk of fail-
ure and minimize the chances of oversizing the component as
described in [9]. Using a stochastic modeling technique, the
probabilistic LCF life prediction of these components is primarily
based on material property data, stress and strain analyzes, peri-
odic inspection/monitoring (I/M) for defects, and modeling of
damage accumulation [10].

Although the presence of uncertainty in hot section component
life prediction is clearly a practical issue, few studies have explored
the problem. Stochastic modeling characterizes material proper-
ties, model parameters and test parameters as random variables.
By integrating the results of finite element analysis (FEA), LCF life
assessments, material anomaly data, anomaly detection prob-
abilities, and I/M strategies, probabilistic life predictions were
performed using DARWIN to obtain the fracture probability for
rotor discs [11–14]. Lu et al. [15] derived the safe life of an aircraft
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Nomenclature

Dt accumulated damage
E Young0s modulus
Fp multiplicative error of model prediction to the

real value
Ft multiplicative error of experimental result to the

real value
Fpt multiplicative error of experimental result to the

model prediction
Kp safety factor
L Uð Þ likelihood function
LN Uð Þ lognormal distribution function
Nf number of cycles to failure
Nfp model prediction
Nf t experimental result
Nreal real fatigue life
Rstrain strain ratio
X random variables
Y the logarithmic tested life

Zj random variables representing different sources of
uncertainty

~Y the prediction of logarithmic fatigue life
x input variables
f X X;Θf

� �
parameterized probabilistic sub-model

gi X;Θg
� �

parameterized physical sub-model
Θf parameters of the probabilistic sub-model
Θg parameters of the physical sub-models
ϕi random variables representing different sources of

scatter
ε prediction error
σlim stress endurance limit
n0 cyclic strain hardening exponent
bp mean, error of model prediction to the real value
bt mean, error of experimental result to the real value
δpred fatigue life prediction uncertainty in log-life
γp coverage factor
sp standard deviation, error of model prediction to the

real value
st standard deviation, error of experimental result to the

real value
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turbine disc by incorporating the uncertainties in parameters that
influenced creep and fatigue life. Larsen et al. [16] explored the
fundamental variability and uncertainty in the microstructural-
based limits of fatigue life in the design of aircraft engine rotors.
Research has shown a potential opportunity for reducing uncer-
tainty in the life-cycle prediction and management of hot section
components. During crack growth modeling, Wei et al. [17]
developed a linear superposition method for creep-fatigue-
oxidation crack growth analysis under high temperatures. In
addition, the uncertainties within parameters for the mechanisms
of fatigue, creep, and oxidation crack growth were considered and
evaluated using Monte Carlo simulations. Guided by the issues of
uncertainty and model errors, Shankar et al. [18] quantified the
uncertainties for probabilistic crack growth analysis by connecting
FEA results, fatigue crack growth laws and a surrogate model using
a Bayesian network. The majority of these published investigations
on probabilistic fatigue failure modeling only considered the
variability resulting from material/component properties, loading
conditions and model parameters without considering the statis-
tical uncertainty, model uncertainty and errors. Recently, a Baye-
sian framework for probabilistic LCF life prediction had been
derived and applied to a number of LCF tests on aircraft turbine
disc alloys, which then outputted the quantified uncertainty value
in the form of uncertainty bounds [19].

Different types of uncertainties and errors in fatigue reliability
analysis can be combined in nonlinear, nested or iterative man-
ners. Systematically dealing with these uncertainties and errors
significantly affects the robustness of uncertainty quantification
(UQ) and model validation. These combined effects often lead to a
significant scatter of hot section component life. For example,
probabilistic simulations of fatigue cracking in a turbine disc per-
formed by Hudak et al. [10] indicated that the variability of usage
can lead to more than six times the variability in fatigue life and
introduce 100 times more variability in the failure probability of a
given life. Thus, this paper attempts to account for the variability,
statistical uncertainty, model uncertainty and errors that influence
damage modeling and develop a probabilistic framework to
incorporate these uncertainties in LCF life prediction.

Through quantitative characterization and the reduction of
uncertainties in applications, UQ measures the input uncertainty
effects on response metrics of interest. It is crucial to achieve
validated predictive results in engineering structural integrity
assessment. In this study, an indispensable step for developing a
practical probabilistic method is to appropriately incorporate and
quantify the uncertainty. Mathematical structures such as interval
analysis, evidence theory and probability theory are often used to
characterize uncertainty. Moreover, a single variable or a vector of
uncertain variables or a vector function of uncertainty variables
can be used for each structure. Several quantitative approaches
have been developed to account for various sources of uncertainty
and to quantify consistency between model predictions and
experimental observations [20–22]. Both classical statistics and
Bayesian theory are used for this purpose [22]; the former are
implemented by calculating statistics of model error and the latter
are used to characterize the consistency level of the model sup-
ported by data, as well as compute the probability of the model
being correct. However, there is no systematically practical and
mathematically sound method for dealing with the problem of
model validation and updating by leveraging new available infor-
mation that can be used to reduce model uncertainties in a stable
manner. The characteristics of Bayesian theory for data analysis
give rise to the capability for high-precision LCA, of which the
uncertainty is presented at various degrees, and data are com-
bined through different stages.

To fulfill the aforementioned needs in an efficient way by
combining classical and Bayesian statistics-based methods, this
paper presents a formal assignment for the uncertainties asso-
ciated with inputs, modeling and simulations along with an
updating procedure for prediction improvement and reducing
these uncertainties. This study presents a comprehensive UQ
procedure to quantify the overall uncertainties in a structural
integrity assessment when input probability distributions must be
estimated from test data. It allows for quantifying and propagating
overall uncertainties through a model for the life prediction and
obtaining their joint effects on the predicted fatigue life distribu-
tion during decision makings.

The rest of this paper is organized as follows. Section 2 reviews
the LCF failure criterion developed for the reliability evaluation and
health management of hot section components. Section 3 discusses
different types of uncertainties and errors and presents a prob-
abilistic LCF life prediction framework under uncertainty. Section 4
describes the quantification of uncertainty and errors in a fatigue
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reliability analysis. Experimental data of a Ni-base superalloy
GH4133 (turbine disc alloy) under different loading conditions and
full-scale tests of aero engine high-pressure turbine discs are used
to illustrate the proposed framework in Section 5. The advantages of
the proposed framework are also discussed. Finally, concluding
remarks are presented in Section 6.
2. LCF failure criteria for gas turbine hot section components

The primary failure mode of hot section components is LCF at
high temperatures, which is an interaction of fatigue, creep and
environmental corrosion and oxidation. Reliable LCF life predic-
tions depend on the following factors: 1) accurate constitutive
deformation laws, which should be validated under various load-
ing conditions; 2) sufficient experimental data; and 3) physics-
based identification of relationships between cumulative damage
and deformation history. There have been numerous investiga-
tions on fatigue life prediction methods for these components
[2,5,23], and several criteria for LCF and thermo-mechanical fati-
gue (TMF) life prediction of specimens/components at room/high
temperatures have been developed [24]. These can be divided into
five categories: classical fatigue criteria, fracture mechanics-based
methods, damage mechanisms, energy criteria and ductility
exhaustion-based criteria.

The classical criteria for LCF life prediction can be mathemati-
cally presented as a relationship between the number of cycles to
failure Nf of a specimen/component and a function related to its
material properties, geometry, loading waveform, and damage
driving parameters:

Φ σ; ε;⋯; P Uð Þ
� �¼ f Nf ;A;B;⋯

� � ð1Þ
where Φ is a function related to the specimen/component defor-
mation history, which considers the stress–strain relationship
during fatigue; P Uð Þ denotes the parameters related to loading
conditions; and A and B are material-dependent constants.

One of the most widely used classical methods is the Coffin-
Manson (CM) criterion, which predicts the LCF life based on the
plastic strain amplitude. Based on the CM criterion, Morrow [25],
Smith-Watson-Topper [26], Ostergren [27], He et al. [28], Wang
[29], Zhu et al. [30] applied mean stress and frequency effects to
the classical methods. However, these methods treated the chan-
ging parameters as material constants, which is the primary dis-
advantage of these methods.

By characterizing the crack growth behavior under cyclic
loading, fracture mechanics-based methods are commonly based
on cyclic J-integrals that are used extensively for fatigue life pre-
diction and component reliability evaluation [31]. A number of life
prediction models [14,32–35] related to fracture mechanics have
been proposed for hot section components; these include the
deterministic fracture mechanics approach, the probabilistic frac-
ture mechanics approach, and their combinations. FEA is the most
commonly used approach for calculating the fracture mechanics
parameters for gas turbine components [36,37]. The limitations of
fracture mechanics-based methods on crack initiation predictions
resulted in the introduction of micromechanics models. These
models were originally developed by Kachanov and Rabotnov [38]
through the introduction of the concept of effective stress and
were named continuum damage mechanics (CDM)-based
approaches. Fracture mechanics-based methods account for dis-
crete crack initiation and propagation in components, whereas
CDM-based approaches disregard these discrete flaws by treating
the material as a continuum where damage evolution eventually
causes a fracture. As a result, CDM-based life prediction methods
have been developed for stress rupture and creep analyzes of
materials and structures [39–41]. Through the implementation of
micromechanics-based fracture models, where the damage state
at the crack tip depends on the critical conditions required for
fracture, CDM-based approaches provide a delicate description of
nonlinear creep and/or fatigue damage accumulation. Failure
occurs when the cumulative damage reaches the specimen's/
component's critical damage. The most significant CDM-based
model was introduced by Chaboche [42,43]. Because damage
evolves with the actual damage state, the damage is accumulated
nonlinearly. The major disadvantage of Chaboche's model is the
difficulty in implementing it on complex structural systems
because of the time-consuming modeling process and high com-
putational efforts. CDM-based approaches have been recently
extended to obtain a more realistic life prediction of high-
temperature components and develop interaction laws in failure
mechanism modeling of creep-fatigue interactions [44–47].

Microstructure plays an important role in the modeling of crack
initiation, as well as subsequent short crack growth, particularly
on small cracks that are comparable to typical microstructural
features. Because metallurgical considerations and physical
mechanisms are increasingly considered in the quest for an
accurate life prediction, the creep and fatigue properties of high-
temperature components have been analyzed in metallurgical and
microstructural forms [48–51]. Moreover, metallurgical- and
microstructural-based models have been presented for fatigue
failure analysis [52–54]. Using crack initiation and micro-crack
growth laws, Rémy et al. [52] developed a damage model to pre-
dict LCF lifetime for single-crystal superalloys at high tempera-
tures. By analyzing the interactions between various micro-
structural parameters and LCF test data, Maderbacher et al. [53]
put forward a new fatigue model that depended on temperature
and microstructure to predict LCF strain-life curves. Using a dis-
sipated energy model to predict LCF life, Gloanec et al. [54]
investigated the impacts of both intrinsic and extrinsic parameters
including microstructure, temperature and/or strain ratio on
model prediction results.

Recent research indicates that the energy criteria for fatigue
endurance calculations are robust and may reduce the scatter
observed in other methods. Energy criteria have been developed
for fatigue and creep-fatigue life prediction based on plastic strain
energy, elastic strain energy or total strain energies. The energy
criterion depends on the selection of strain energy density (SED)
per cycle as the damage parameter. The SED method assumes that
for a given stress concentration point, the SED in confined plasti-
city is the same as the SED at that point calculated in elasticity. The
plastic SED-based criterion is predominantly used to characterize
the LCF behavior of materials operating at high levels of stress/
strain; its shortcoming lies in the fact that it cannot be used under
high cycle fatigue conditions. To date, energy criteria have been
applied in the life prediction of high-temperature components
[5,8,24,55–58]. The energy criteria provided a physics-based
method to predict hot section component life. However, there is
generally a large variance in experimental fatigue results and the
modeling of failure mechanisms [59,60]. These results indicate
that a non-deterministic feature of fatigue failure mechanism must
be considered for a life-cycle assessment.

Because they use both strain and stress, energy criteria appear
robust and reduce the amount of scatter when compared with
other methods. However, the failure data of hot section compo-
nents is often insufficient and fatigue test sample sizes tend to be
small. Moreover, multiple types of uncertainty and error appear at
various stages of normal operating conditions. Thus, this paper
attempts to incorporate different sources of uncertainty and error
systematically to improve robustness in model calibration and
model validation for probabilistic LCF life prediction. The afore-
mentioned deterministic LCF life prediction methods present an
initial development of probabilistic life prediction methods.
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3. Probabilistic LCF life prediction framework under
uncertainty

The fatigue cracking process is an inherently random process
because of material variability and microstructural irregularities.
In addition, various sources of uncertainty and errors arising from
a simplified representation of the actual physical process (pri-
marily through semi-empirical or empirical models) and/or sparse
information on material properties, environmental conditions, and
loading profiles contribute to stochastic behavior during physics-
based failure mechanism modeling. This leads to the estimated
crack size at a given time being treated as random. Thus, the
appropriate treatment of uncertainty in an LCF regime has become
a significant topic with widespread interest [18,61–64].

The various sources of uncertainty, based on their differences in
origin, modeling and effects, can be broadly divided into two
categories: the epistemic uncertainty and the aleatory uncertainty.
The first derives from the inherent variation resulting from a
physical process or an environmental condition [65]. For this type
of uncertainty, additional knowledge is aimed not at reducing the
uncertainty but at better quantifying the actual physical state of
the process. The latter category derives where knowledge or
information is lacking in modeling the processes. The acquirement
of new information of the physical process, better use of the data
or better modeling methods often leads to a reduction of epistemic
uncertainty.

Structural integrity issues are often investigated under the
confines of a model universe that includes physical and probabil-
istic model sets. These models can include various alternatives
that are generally used to mathematically model reality to solve
the problem. The model universe may include intrinsic uncertain
quantities; moreover, the probabilistic models are sometimes
invariably imperfect and lead to additional uncertainties. A critical
aspect in the development of a model universe is accurately
modeling these uncertainties. The features and characteristics of
uncertainties must be studied within the model universe. Due to
the nature of engineering issues, the process for setting up a
model universe is largely subjective. Thus, an engineer's conceived
models must be proven close to reality.

To provide a basis for discussion in this paper, a model universe
for LCF life prediction issue should involve the following elements:
1) an input variable set x¼ x1; x2;⋯; xnð Þ, which are the outcomes
of basic random variables X¼ X1;X2;⋯;Xnð Þ; 2) a parameterized
probabilistic sub-model f X X;Θf

� �
, which characterizes the prob-

ability distribution of random vector X; and 3) a parameterized
physical sub-model set yi ¼ gi X;Θg

� �
; i¼ 1;2;⋯; k, which describes

the relations between x and k derived quantities y¼ y1; y2;⋯; yk
� �

.
According to the life prediction issue of mechanical components,
the random variables X can be directly observed or determined
from experimental data, including material properties (e.g., duc-
tility, toughness, and endurance limit), load characteristics (e.g.,
plastic strain range, maximum stress, and strain ratio), environ-
mental effects (e.g., temperature) and geometry. The derived
variables y cannot be directly obtained, save those obtained from
laboratory or field studies; they are derived quantities such as
deformations, stresses, and measures of cumulative damage. The
sub-models f X X;Θf

� �
and gi X;Θg

� �
, are generalized mathematical

models of reality without considering variability and often contain
model errors that are usually obtained through the fitting process
of observed data. In this paper, these elements are used to inves-
tigate the UQ issue and evaluate their relevance to life prediction
under different loading conditions.

Based on the elements mentioned above, various sources of
uncertainty are categorized as follows:
1. Physical variability

� Variability or scatter in random variables X, including the
uncertainty results from the environment, material properties,
test procedures, and number of cycles to failure of specim-
ens/components with same material and/or experimental
conditions.

� For this variability, multiple-repeat observations of a physical
quantity often do not result in identical results.

2. Statistical uncertainty

� Uncertainty results from data-driven statistical estimation for
model parameters according to available data, including statis-
tical uncertainty within the estimation results of parametersΘf

in the probabilistic sub-models and the parameters Θg in the
physical sub-models. Because the observations of the variables
are imperfect characterizations, there may be observation bias
within the observed data.

� Measurement errors of observations, based on which of the
parameters Θf and Θg are estimated.

� Insufficient data for the characterization of input random vari-
ables, such as the uncertainty caused by selecting the prob-
ability distribution type and parameters.

3. Model uncertainty and errors

� Uncertainty arises from the intentional simplification of rela-
tionships used in various models to represent practical rela-
tionships or actual phenomena of interest. This occurs because
models cannot be sufficiently perfect without introducing
uncertainty into either probabilistic or physical models. The
uncertainty in the LCF life prediction model originates from the
selection of probabilistic sub-model form f X X;Θf

� �
to charac-

terize the distribution of random variables X and the physical
sub-model form gi X;Θg

� �
to describe the derived variables.

� Model errors result from the deviations between the model and
the system that generated the measurements; these can be
partitioned in two parts following their nature: stochastic
model errors and systematic model errors. Stochastic model
errors in experimental measurements are caused by unknown/
unpredictable experimental changes. Systematic model errors
in experimental observations typically come from the measur-
ing instruments. If the experiment is repeated under the same
conditions, the stochastic model errors vary from one realiza-
tion to the other, while the systematic model errors remain
the same. These two types of errors must be treated in
different ways.

� The complexity of fatigue phenomena necessitates using sim-
plified models for fatigue life prediction. A tradeoff between the
simplicity and reliability of the model is indispensable. Fur-
thermore, a comparison of uncertainty from model errors and
other uncertainties is useful.

As mentioned above, the separation of the aleatory and epis-
temic uncertainties relies heavily on the modeler. Moreover, it is
easy to find which uncertainty can be moderated and which
uncertainty is less prone to be reduced. Better comprehension of
the characteristics of uncertainties is critical to address life pre-
diction issues properly.

During the probabilistic modeling of failure mechanism, mod-

els are developed to understand physical behaviors and predict

or simulate the responses of physical processes. To approximate

a practical physical situation, a model is often constructed as



S.-P. Zhu et al. / Reliability Engineering and System Safety 146 (2016) 1–12 5
“a reduced and parsimonious representation of a physical, che-
mical, or biological system in a mathematical, abstract, numerical,
or experimental form” [66]. By making certain assumptions, it is
impossible for a model to completely depict the actual situation.
Except for the simplifying assumption, models formulized for a
particular physical system may vary due to a modeler's preference,
model user requirements, or economic matters. Thus, these
models are far from being perfect for the characterization of sys-
tem behaviors, and model uncertainty is unavoidable. Thus, model
uncertainty quantification is practically a requirement in problems
where the predictions from engineering models are significantly
different. Assuming that fatigue model parameters are random
variables, the uncertainty can be characterized using correspond-
ing probability distributions to quantify the uncertainty under
various loading conditions. An important step in the probabilistic
LCF life prediction lies in the accurate prediction of the probability
distributions of model parameters.

The probabilistic LCF life prediction process for mechanical
components can be depicted as shown in Fig. 1. First, the para-
meters in engineering (deterministic) models must be deter-
mined; these are the foundations of fatigue life predictions under
a particular uncertainty. Second, when new information is avail-
able, the knowledge of fatigue failure can be evolved and reused
for LCF life prediction based on a different uncertainty.

Because the incorporation of different sources of uncertainty
and error is difficult, this paper attempts to develop a compre-
hensive procedure to address these uncertainties and errors in the
fatigue reliability analysis of hot section components.
4. Uncertainty quantification for probabilistic LCF life
prediction

Because the life prediction process contains uncertainty,
implementing this process from a probabilistic perspective is cri-
tical. Predicting life based on uncertain information requires the
characterization of the uncertainty to tune risk levels as needed in
a particular application. Compared with traditional methods,
where the limitations of conservative safety factor-based methods
can be difficult to overcome, probabilistic modeling methods can
quantitatively handle uncertainty in LCF life predictions. This
section quantifies three types of uncertainty and errors in a fatigue
reliability analysis and presents a simple method for predicting
uncertainty using multiplicative and additive UQ methods. The
appropriate incorporation and quantification of uncertainty has
been widely recognized as a fundamental issue in the probabilistic
modeling of fatigue failure.

LCF life prediction uncertainty is affected by a number of
uncertainty and error sources. In this analysis, terminology scatter
is used to address aleatory uncertainty. By assuming that the
contributions from all variation types, statistical uncertainties and
model uncertainties, are independent, similar to the prediction
squared error proposed in [67], a general model for characterizing
different types of uncertainty within LCF life prediction can be
derived as

Y ¼ ~Y þϕ1þϕ2þ⋯þϕpþZ1þZ2þ⋯þZq ð2Þ
where ϕi i¼ 1;2;⋯; pð Þ and Zj j¼ 1;2;⋯; qð Þ are random variables
representing different sources of scatter and uncertainty, respec-
tively. Y represents the logarithmic tested life, thus Y ¼ ln Nf t; ~Y
represents the logarithmic predicted fatigue life, thus ~Y ¼ ln Nfp.

The logarithmic predicted fatigue life can be represented as

~Y ¼ ln Nfp ¼ f X;Θ;Φ
� � ð3Þ

where f X;Θ;Φ� �
is a fatigue life prediction model involving the

damage driving parameters X (e.g., stress, and strain), the vector of
estimated model parameters Θ¼ θ1;θ2;⋯;θr
� �

, and the modeled
scatter Φ.

The prediction error ε is determined by

ε¼ Y� ~Y ¼ ln Nf t� ln Nfp ¼ g X;Φ
� �� f X;Θ;Φ

� � ð4Þ
where g X;Φ� �

is the real physical relation for the log-life that
depends on the damage driving parameters X and the involved
scatter Φ.

Thus, the prediction error according to Eq. (2) and Eq. (4) can
be approximated by the sum of

ε¼ϕ1þϕ2þ⋯þϕpþZ1þZ2þ⋯þZq ð5Þ
where the random quantities ϕi and Zj are assumed with zero
mean and variances ν2i and τ2i , respectively.

Through the logarithmic transformation, the logarithm of a
lognormal random variable (such as the fatigue life) is normally
distributed; the variance of the transformed variable can then be
interpreted as the squared coefficient of variation for the original
variable according to the Gauss’s approximation formula [68]. The
measures of variation ν2i and τ2i can thus be treated as coefficients
of variation in the fatigue life:

Var ln Nfð Þ � Var Nfð Þ ∂ ln Nf

∂Nf Nf ¼ E Nf½ �

� �2

¼ Var Nfð Þ
E Nf½ �2

ð6Þ

Eq. (6) is often used to estimate the uncertainty from the
viewpoint of engineering judgments, as it easily relates to the
percentage uncertainty. In this analysis, the variances and covar-
iance of ϕi and Zj are used in place of their exact distributions. The
uncertainty within a quantity corresponding to log-life can be
estimated using a sensitivity coefficient. The maximum likelihood
method is commonly used to estimate the variances in statistical
uncertainty. However, the original data are required for this sta-
tistical method. More details and explanations on the quantifica-
tion of uncertainty are provided in the following section.

4.1. Estimation of physical variability

In general, the scatter or physical variability can be estimated
through experimental examination and calculation of the sample
standard deviation. However, it is often impossible or economic-
ally unaffordable to implement experiments for hot section com-
ponents. In this case, previous design experience can be utilized.

There are several possible quantities that must be estimated,
including (1) the parameters and errors of the LCF life prediction
model, (2) the material properties, and (3) the variance of the
output and measurement error. In this case study of an aircraft gas
turbine disc material (GH4133 superalloy), the evaluation of the
physical variability is based on 10 group fatigue tests at 400 °C and
500 °C with a strain ratio of Rε ¼ �1. The physical variability for
LCF life of GH4133 originates from material properties and
experimental uncertainty. Based on the LCF life data obtained from
other experiments, the calculated coefficient of variation is used to
represent an uncertainty regarding the experimental results. With
the coefficient of variation determined from 10 group tests, a
lognormal distribution was then fitted to this coefficient of varia-
tion by νlif e ¼ 0:202577, which gives the estimated scatter in log-
life.

The strength of a component relies not only on its material
properties but also its geometry and quality of assembly. In gen-
eral, statistical loads and material properties can be developed
from test data; however, in practice they are often based on lim-
ited test data or even expert opinion and judgment. This can result
in a scatter or uncertainty concerning the actual underlying
probability distributions for these random quantities. This scatter
and uncertainty often has a direct impact on component life pre-
diction. The random variables of the material properties for
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Table 1
Random material constants of GH4133.

Random variables Distribution Mean value
(MPa)

Standard
deviation

Young’s modulus E Normal 1.992�105 7.0�103

Stress endurance limit σlim Normal 4.207�102 17.33
Cyclic strain hardening
exponent n0

Normal 0.1005 0.006093
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GH4133 were determined from an experimental data analysis in
[69,70] and are shown in Table 1.

Because the loads that a component experiences during its
service time are often difficult to obtain, the scatter and uncer-
tainty in these loads must be quantified. Experience from service
measurements often provides a rough estimate of potential load
testing scenarios, so variations must be considered. Because the
load/strength issue may override the remaining properties and
lead to negligible variability in strength, the load scatter and
uncertainty must be estimated. In the case study, existing load
scatter and uncertainty for the test equipment was assigned an
uncertainty percentage based on the testing machine manu-
facturer. Moreover, the load scatter and uncertainty due to indi-
vidual use can be estimated based on previous engineering
experience and/or differences in load spectrum. Based on the
service life of a first-stage turbine disc of an aero engine installed
in two types of aircrafts listed in [71], the load scatter and
uncertainty for this disc can be obtained as νload ¼ 0:206142.

4.2. Statistical uncertainty

Standard statistical methods such as the maximum likelihood
method and the bootstrap method are often used to obtain the
variances of estimates. In the case of the physics-based LCF life
prediction models shown in Eqs. (1) and (3), the model parameters
can be fitted using a least squares method. As discussed in [72], the
prediction uncertainty for a LCF life prediction model with more
variables can be obtained by

τ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

n

r
ð7Þ

where r is the number of model parameters. Eq. (7) can be used to
approximate the statistical uncertainty, particularly for situations
where the original data are not available. Moreover, the statistical
uncertainty can be roughly expressed as τ¼ s

ffiffiffiffiffiffiffiffi
r=n

p
. In our case

study, a two-parameter generalized damage parameter (GDP) [56]
was used based on 61 tests. As a result, the statistical uncertainty
can be estimated by τstat ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
2=61

p
, where the scatter within log-

life is obtained from 10 group fatigue tests as previously men-
tioned in Section 4.1, i.e., s¼ νlif e ¼ 0:202577.

4.3. Model uncertainty

During PoF-based reliability assessments, physical models are
developed to predict component life under various failure
mechanisms. These models are generally given as parametric
forms with parameters derived through data-driven estimation
methods. Generating a physical model is a mathematical simpli-
fication of a complicated phenomenon that utilizes various
assumptions. Except for simplifying assumptions, model choices
may vary depending on the subjective decision-making process of
model construction; these choices are often not valid for all
situations.

If dealt with appropriately, model uncertainty can be used to
characterize the actual value of a quantity with a degree of cer-
tainty based on the model prediction. In general, this uncertainty
can be measured by independently performing experiments and
assessing the consistency of the model results to actual observa-
tions from these experiments. Note that the observations of
experiments themselves may also contain uncertainties that may
originate from measurement errors and/or the inadequate preci-
sion of measurement facilities. Thus, model uncertainty can ori-
ginate from inherent epistemic uncertainty within model para-
meters and/or the propagated aleatory/epistemic uncertainty
through model inputs.

The UQ associated with model prediction results not only
serves as a criterion of confidence for the model prediction but
also facilitates the estimation of other qualities, including the
probability of crossing a predefined physical limit. This study
incorporates model uncertainty into the life prediction of aircraft
turbine discs. The experimental results can be used as repre-
sentations of practical values because the errors of measurement
facilities and variations of test conditions may be small enough to
be disregarded. The model predictions can also be viewed as
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another representation of actual values based on the physical or
empirical modeling processes presented in Fig. 2.

In Fig. 2, the uncertainty in the experimental data determines
the position of the uncertain data points as presented on the Nft

axes. The uncertainty within the model outputs makes the loca-
tion of data points uncertain on the Nfp axes. Moreover, the actual
value of the relevant quantity is believed to reside somewhere in
the rectangle, which represents the uncertainty in a particular
location of every experimental result and model prediction pair.
Thus, the two questions that must be answered are 1) how precise
are the predictions, and 2) how does one implement a probabil-
istic quantification of that belief. Because both model predictions
and experimental results provide information on physical vari-
ables (such as fatigue life during life prediction), the comparison is
implemented through the relative error between the model pre-
dictions and the experimental results, thereby providing infor-
mation for handling and mitigating uncertainty. Through the
proper manipulation of this error, model predictions can then be
considered independent samples from a population of model
uncertainty that follows a particular statistical distribution.

As shown in Fig. 2, updating output with independent experi-
mental data helps incorporate uncertainties that are not presented
in the probability distributions developed for model inputs and
parameters. According to the black-box viewpoint [19,73], the
errors introduced by experimental measurements were assumed
to be independent from the errors resulting from model predic-
tions. When comparing the aforementioned representations
(model prediction and experimental result) to actual values, a
multiplicative error for each test i¼ 1;2;⋯; kð Þ is used to describe
the experimental error Ft;i and the model prediction error Fp;i.
During LCF life prediction, the ratio of real-life and model pre-
dictions or experimental results is assumed to be a random vari-
able following a lognormal distribution, which is defined and
represented, respectively, as

Nreal;i
Nf t;i

¼ Ft;i Ft � LN bt ; stð Þ ð8Þ

and
Nreal;i
Nf p;i

¼ Fp;i Fp � LN bp; sp
� �

ð9Þ

Combining Eqs. (8) and (9), the relationship between experi-
mental uncertainty and model uncertainty can be derived as

Nf t;i

Nf p;i
¼ Fp;i

Ft;i
¼ Fpt;i ð10Þ
Assuming that Fp and Ft are independent leads to

Fpt � LN bp�bt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pþs2t

q	 

ð11Þ

The model uncertainty is characterized through a Bayesian
inference where the experimental results are compared. Within
this process, knowledge is consecutively evolved and the uncer-
tainty is continually reduced by leveraging the Bayesian updating
of the gradually gathered new information. Given a sample of a
number of cycles to failure Nft ¼ Nf t;1;Nf t;2;⋯;Nf t;n

� �
and model

predictions Nfp ¼ Nfp;1;Nfp;2;⋯;Nfp;n
� �

, the posterior joint dis-
tribution can be obtained by

πðbp; sp Nf t;i;Nfp;i; bt ; st
�� �¼ π0 bp; sp

� �� LðNf t;i;Nfp;i; bt ; st bp; sp
�� �

R
sp

R
bp
π0 bp; sp

� �� L Nf t;i;Nfp;i; bt ; st bp; sp
�� �

dbpdsp
� ð12Þ

with the likelihood function

LðNf t;i;Nfp;i; bt ; st jbp; spÞ ¼ ∏
n

i ¼ 1

1ffiffiffiffiffiffi
2π

p Nf t;i

Nf p;i

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pþs2t

q exp �1
2
�

ln Nf t;i

Nf p;i

	 

� bp�bt
� �h i2

s2pþs2t

0
B@

1
CA

ð13Þ
where π0 bp; sp

� �
is the joint prior distribution of parameters bp and

sp and π bp; sp Nf t;i;Nfp;i; bt ; st
�� ��

is the joint posterior distribution of
these parameters.

When new data becomes available, Eq. (12) is later used to
update the posterior distributions of parameters bp and sp gener-
ated based on previous data. Using Eq. (9), if considering only the
model uncertainty, the life distribution Nreal can be easily sum-
marized from samples of π0 bp; sp

� �
using a Markov Chain Monte

Carlo simulation as

Nreal � LN ln Nfp
� �þbp; sp

� � ð14Þ
Because the validation tests are performed under conditions

that are expected to give rise to the same model errors as those
generated in-service. The updated model uncertainty can be pre-
sented as the random scatter together with the model uncertainty.
However, it is often impossible to implement validation tests
under practical engineering conditions. This can result in addi-
tional uncertainties to the life prediction results such as the var-
iance of remaining model uncertainty, which comes from the
randomness and unpredictability of future working conditions
that cannot be reflected in the validation tests.

Experimental uncertainty can be depicted as the variation-edge
in the horizontal direction of the surrounding rectangle for every
data point presented in Fig. 2. The model uncertainty will be
overestimated when the experimental uncertainty is not sub-
tracted from the obvious scatter of data. Thus, combined with the
experimental uncertainty obtained in Section 4.1, a black-box
approach based on experimental results and model predictions
with a Bayesian inference framework is constructed to obtain a
robust quantification of model uncertainty.

4.4. LCF life prediction uncertainty

According to Eq. (5), the LCF life prediction uncertainty is
obtained by summing all the contributions as

δpred ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν21þν22þ⋯þν2pþτ21þτ22þ⋯þτ2q

q
ð15Þ

During probabilistic LCF life prediction, all types of scatter and
uncertainty characterized by an associated standard deviation are
assumed to be statistically independent. Consequently, there
is no covariance term in Eq. (15); it is simply the sum of these
covariance terms using Eq. (15) to correlate the scatters and
uncertainties. This permits the combination of different scatter
and uncertainty sources into a single uncertainty measure.

The implementation of life prediction and reliability analysis
results will be described in the following section. A critical goal is
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to gain information for particular points from which uncertainties
can be significantly reduced. In this paper, model uncertainty
appearing in the model parameters is by far the most significant
source of uncertainty. Accordingly, it is critical to further investi-
gate the model parameters and reduce model uncertainty during
the decision-making process.

4.5. Efficient probabilistic analysis

In this section, the uncertainty within LCF life prediction is
utilized and given as a prediction interval or presented in the form
of a safety factor for the log-life. Through the formulization of a
prediction interval under normal approximation, we have

ln Nf ¼ ln Nfp7γpδpred ð16Þ

where δpred is the uncertainty within LCF life prediction; the factor
γp is a coverage factor that expands the coverage of the uncer-
tainty estimate depending on the percent confidence desired in
the estimate and the quantity of observations available for com-
puting the random and bias variances, such as γ0:025 ¼ 2 for a 95%
interval and γ0:001 ¼ 3 for a 99.8% interval. The coverage factor is
greater for a higher desired confidence level and/or a smaller
number of observations.

The life safety factor can be defined as the ratio of the median
life over a low quantile life based on the prediction interval

Kp ¼
Nfp;0:5

Nfp;p
ð17Þ

where p is the specimen/component failure probability.
Combined with Eq. (16), the safety factor can be obtained by

Kp ¼ exp γp Uδpred
	 


ð18Þ

Moreover, experiments can be used to update the predicted
fatigue life by correcting the systematic error and reducing the
model uncertainty.

According to LCF life predictions based on the prediction
uncertainty, Eq. (16) requires a single standard deviation measure
(1σ) for each random uncertainty source. Our approach deter-
mines the largest or worst-case error in a parameter from
experiments that isolate a single source of uncertainty and identify
it as the single standard deviation measure associated with that
particular source. This method is a conservative approach because
the largest or worst-case error measure is typically considered to
be three standard deviations (3σ). One can choose how much
conservatism is built into the UQ.

Another objective for a probabilistic analysis is quantifying the
fatigue reliability based on the random variable inputs. Fatigue
reliability Rf is defined by the probability of total fatigue damage
at a given lifetime being less than one

Rf ¼∬Do1;�1oσlim o þ1f Dt ;σlimð ÞdDtdσlim ð19Þ
where f Dt ;σlimð Þ is the joint probability density function (PDF) of
the cumulative damage and the endurance limit.

Based on the conditional distribution of total fatigue damage,
Eq. (19) can be rearranged as

Rf ¼∬ f Dt σlim
�� Þf σlimð ÞdDtdσlim ¼

Z
�1oσlim o þ1

P Dto1 σlim
�� Þf σlimð Þdσlim

��

ð20Þ
where the conditional reliability P Dto1 σlim

�� Þ�
can be obtained

while the conditional total fatigue damage can be determined as a
normal random variable using the central limit theorem for any
given σlim.

By characterizing the input random variables, a probabilistic
interpretation can be developed to capture the aforementioned
scatter and uncertainty. Typically, fatigue life and reliability can be
obtained using Eq. (16) and Eq. (20), respectively, to consider the
contributions of each source of scatter and uncertainty. Moreover,
fatigue reliability can be obtained by simulating input load varia-
bility via FE analysis using Eq. (20), where the distribution of total
fatigue damage is calculated based on the quantified uncertainty
in this analysis; this will be further investigated.
5. Probabilistic LCF life prediction and experimental data
comparison

To predict LCF life probabilistically, the combination of physics-
based and data-driven approaches considers the proper fracture
mechanism while correcting for material variations and model
uncertainty using data-driven model updating. In general, the
degree of consistency between model outputs and test observa-
tions can be measured by model validation. This section aims to
validate and assure confidence in the life prediction of aircraft
turbine engine discs. One important aspect in this process is the
rational, clear treatment of all types of uncertainties and errors. By
accounting for these uncertainties in the systematic manner dis-
cussed in Section 3, the probability distribution of fatigue life can
be calculated. Moreover, the model performance can be quanti-
tatively judged using the methods developed in Sections 2 and 4.

5.1. Turbine disc alloy GH4133 tests at 500 °C and 400 °C

Using the method developed to estimate model uncertainty in
Section 4.3, the model uncertainty bounds (a 2.5–97.5% prediction
interval) for the life prediction of GH4133 by the GDP method are
approximately �7:96%; þ3:10%½ � and the model uncertainty can
be approximated by τmodel ¼ 0:028214 when the sample size is
sufficiently large. Multiple types of scatter and uncertainty, as well
as their contributions given as a standard deviation of the log-life
over the uncertainty of life prediction, are summarized and shown
in Table 2. The sum of the uncertainty measure for an aircraft
turbine disc can be computed using Eq. (15).

Using the GDP method, the 95% prediction intervals of LCF life
prediction for aircraft turbine disc alloy specimens according to Eq.
(16) are compared with the observed results in Figs. 3–5 under
different loading conditions. Using probability distributions of
inputs and quantified uncertainty along with the GDP life pre-
diction model leads to a predicted life distribution that can be
expressed with the lower bound (2.5%) and upper bound (97.5%) of
the predicted life.

As observed in the 2.5–97.5% bounded figures, most of the
predicted LCF life intervals using the GDP method for GH4133 are
bounded within a factor of 72 compared to the tests at 500 °C,
Rstrain ¼ �1 and 400 °C, Rstrain ¼ 0. However, the prediction inter-
vals for GH4133 at 400 °C and Rstrain ¼ �1 tend to be conservative
for tests above 104 cycles. The probabilistic LCF life predictions
using the GDP method demonstrated consistency with the
experimental results by means and bounds (2.5% and 97.5%). Based
on both the upper and lower bounds of the predicted fatigue life,
the predictions incorporate the contributions from different scat-
ter and uncertainty sources and characterize the statistical nature
of fatigue life through UQ.

Using the previously developed Bayesian framework for UQ in
[19], the GDP method predicts the LCF life with the uncertainty
bound �10:01%; þ8%½ �, and the LCF prediction uncertainty δpred
as approximately 0.04595 for the GH4133 superalloy. Compared
with the LCF prediction uncertainty of δpred ¼ 0:292701 as shown
in Table 2, the difference between the two results arises from the
consideration of load scatter and uncertainty due to individual
usage based on previous engineering experience in this analysis.
Additionally, the proposed framework using the multiplicative and



Fig. 3. Prediction intervals versus experimental life for GH4133 at 500 °C
and Rstrain ¼ �1.

Fig. 4. Prediction intervals versus experimental life for GH4133 at 400 °C
and Rstrain ¼ �1.

Table 2
Table summarizing the sources of uncertainty of GH4133.

Type of scatter and uncertainty Scatter and uncertainty

Physical variability (experimental uncertainty) 0.202577
Load scatter 0.206142
Statistical uncertainty (two-parameter model) 0.036681
Model uncertainty 0.028214
Sum 0.292701

Fig. 5. Prediction intervals versus experimental life for GH4133 at 400 °C
and Rstrain ¼ 0.
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additive UQ method can directly identify the factors that con-
tribute most to the resulting output uncertainty and offer a useful
reference for uncertainty reduction in decision-making, which has
the merit of simplicity for engineering applications.
5.2. Full-scale turbine disc tests

In this section, the proposed framework is verified using full-
scale tests of high-pressure turbine discs from an aero engine (see
Fig. 6a) used in a particular aircraft. This disc works under high
temperatures and experiences high rotational velocity. This disc is
used to accurately settle the ring of the rotating blades. It is also
used to deliver the energy absorbed by the rotating blades through
the shaft by connecting the turbine to the compressor. High
rotational velocity often gives rise to significant centrifugal forces
in discs. Moreover, their high-temperature working conditions
often reduce disc material strength.

High-temperature LCF tests for full-scale turbine discs were
conducted at the vertical disc test facility of the China Gas Turbine
Establishment. The spinning facility includes a vacuum case, data
acquisition and control systems, and a main power system, as
shown in Fig. 6. The performance indicators of this test facility are
listed below in Table 3. Tests on three GH4133 superalloy turbine
discs with the same geometry were carried out under the fol-
lowing loading conditions: a rotation speed range of 2000–12710–
2000 rpm (rotations per minute) and a temperature distribution of
250 °C710 °C at the hub zone and 270 °C710 °C at the rim sec-
tion. These tests were performed with a triangular rotation speed
spectrum, as shown in Fig. 7. The speed control precision is
approximately 750 rpm for the rotation speed range of 2000–
4000 rpm and 720 rpm for the rotation speed range of 4000–
12710 rpm. In these tests, service life is determined for the disc
under stress and temperature profiles similar to those endured by
the engine, where the disc is deemed a ‘failure’ when an ‘engi-
neering crack’ reaches approximately 0.78 mm in length at the
surface of disc-critical regions such as the assembly holes, the
dovetail-rim area, and the hub zone.

Based on the physical variability mentioned in Section 4.1, the
coefficient of variation of this high-pressure turbine disc can be
estimated as νlif e ¼ 0:166227 based on the three disc tests. These
variations can be attributed to material scatter and production
scatter because of different assembly, processing and/or supplier
effects, geometry and assembling quality. Similarly, using the GDP
method for the LCF life prediction of high-pressure turbine
discs, the sources of uncertainty are summarized as shown in
Table 4; the LCF life prediction uncertainty can be estimated as
δpred ¼ 0:298903.

Using the GDP method, the 95% prediction intervals of LCF life
prediction of high-pressure turbine discs according to Eq. (16) are
subsequently compared with those obtained from full-scale fati-
gue tests in Fig. 8. Good consistency is clearly demonstrated
between the observed test results and the calculated prediction
intervals using the GDP method by the mean, upper and lower
bounds.

Under the assumption that the contributions from scatter and
uncertainty sources are independent, although contributions from
particular sources may vary for different applications, it is worth
noting that LCF life prediction uncertainty is dominated by the
model uncertainty, load scatter and uncertainty and physical
variability for the experimental data sets of GH4133 and high-
pressure turbine discs outlined above. For the same test data,



Fig. 6. The vertical disc test facility, (a) high-pressure turbine disc for tests, (b) the vacuum case, and (c) the main power system.

Table 3
Performance indicators of the vertical disc test facility.

Category Performance indicator

Test type Strain measurement, overspeed, over-
temperature, fracture and LCF test

Maximum diameter of the
rotor

1200 mm

Rotation speed range 0–25000 rpm
Maximum temperature 800 °C710 °C
Rotation speed spectrum Trapezoidal, triangular and random waveforms
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Fig. 7. Rotation speed spectrum for the full-scale turbine disc test.
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Fig. 8. Prediction intervals versus experimental life for high-pressure turbine discs.

Table 4
Table summarizing the sources of uncertainty of high-pressure turbine discs.

Type of scatter and uncertainty Scatter and uncertainty

Physical variability (experimental uncertainty) 0.166227
Load scatter 0.206142
Statistical uncertainty (two-parameter model) 0.135724
Model uncertainty 0.028214
Sum 0.298903
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using different fatigue models often results in different life pre-
diction uncertainties according to Eq. (16); tighter uncertainty
bounds generally give rise to better model selection with the same
information and knowledge. Thus, this work introduces a theore-
tical foundation for model selection in the life prediction of
engineering components.

In this study, the proposed framework is capable of repre-
senting the propagation of various uncertainties within the life
prediction model, as well as determining the joint effect of these
uncertainties on the predicted fatigue life distribution. The fra-
mework can be further used to facilitate fatigue life prediction for
most mechanical components by quantifying the uncertainties
within total inputs and model uncertainty. Through full-scale
testing of the discs and specimens, the predicted lifetime and
reliability of the GH4133 superalloy can be obtained with high-
precision and less uncertainty using numerical simulations via a
stochastic FEA.

In terms of the stochastic nature of fatigue, the PDFs of the
stress and strain associated with turbine discs can be obtained
through FE analysis. Based on the FEA-based stress/strain analysis
of turbine discs subjected to multiple levels of practical cyclic
loadings, the fatigue reliability of the turbine disc can be calculated
and further assessed.
6. Conclusions

To assess the LCF life of aircraft gas turbine discs, this paper
conducted UQ using classical statistics and Bayesian theory to
describe the failure properties of GH4133 superalloy and full-scale
tests of aero engine high-pressure turbine discs. The findings of
this paper are summarized as follows.

(1) A probabilistic PoF-based framework for LCF life prediction of
aircraft gas turbine discs under uncertainty is developed. This
framework can facilitate the uncertainty propagation through
the life prediction model in a coherent way to assess their
joint effects on the predicted fatigue life distributions.

(2) A comprehensive UQ procedure is presented by quantifying
multiple types of uncertainty using multiplicative and additive
UQ methods. With respect to the aircraft gas turbine discs,
three categories of uncertainty exist in this UQ procedure:
variability associated with loading conditions and material
properties, statistical uncertainty originating from measure-
ment errors and/or sparse data and/or I/M results, and model
uncertainty and errors introduced during fatigue failure ana-
lysis and numerical simulations. Furthermore, the factors that
contribute most to the resulting output uncertainty have been
investigated and identified, thus providing a theoretical basis
to select the most effective tests to reduce uncertainty.
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(3) The prediction accuracy of the proposed framework is vali-
dated through a comparison of model prediction intervals to
the experimental results of GH4133 and full-scale turbine disc
tests. The results demonstrate the good consistency between
the experimental observations and the model prediction
intervals using the GDP method. Based on both the lower
and upper bounds of the predicted LCF life, the calculated
predictions incorporate contributions from different scatter
and uncertainty sources and characterize the statistical nature
of fatigue life. The proposed framework can be extended to
any PoF-based LCF life prediction models and fatigue relia-
bility analysis methods; this paper uses the GDP method
solely for illustration purposes.
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