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Although Dempster–Shafer (D–S) evidence theory and its reasoning mechanism can deal with

imprecise and uncertain information by combining cumulative evidences for changing prior

opinions of new evidences, there is a de¯ciency in applying classical D–S evidence theory

combination rule when con°ict evidence appear ��� con°ict evidence causes counter-intuitive
results. To address this issue, alternative combination rules have been proposed for resolving the

appeared con°icts of evidence. An underlying assumption is that con°ict evidences exist, which,

however, is not always true. Moreover, it has been veri¯ed that con°ict factors may not be
accurate to characterize the degree of con°ict. Instead, the Jousselme distance has been

regarded as a quanti¯cation criterion for the degree of con°ict because of its promising prop-

erties. To avoid the counter-intuitive results, multiple sources of evidence should be classi¯ed

¯rst. This paper proposes a novel algorithm to quantify the classi¯cation of multiple sources of
evidence based on a core vector method, and the algorithm is further veri¯ed by two examples.

This study also explores the relationship between complementary information and con°icting

evidence and discusses the stochastic interpretation of basic probability assignment functions.

Keywords: Dempster–Shafer evidence theory; evidence distance; evidence con°ict; quanti¯-

cation classi¯cation.

1. Introduction

Probability theory has been widely used to characterize the information uncertainty

in engineering systems. However, with the increased system complexity and engin-

eering requirements, some limitations of probability theory have been recognized: (1)

epistemic uncertainty of system, which is subjective, and reducible uncertainty
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resulting from the lack of knowledge or data about the system cannot be described1;

(2) di®erent types of information obtained from multiple sources cannot be aggre-

gated using traditionally probability theory1; (3) disparity between imprecision and

uncertainty must be declared in quanti¯cation of system uncertainty.2 Thus, to

overcome these limitations, some new theoretical frameworks have been proposed

as alternatives to probability theory, such as possibility theory,3,4 Dempster–Shafer

(D–S) evidence theory,5 fuzzy sets theory, and interval probability.6–11

D–S evidence theory was introduced by Shafer5 based on Dempster's investi-

gation.12 It employs a con¯dence interval which is represented by the upper and

lower limits called plausibility function (Pl) and belief function (Bel). Both limits are

constructed by basic probability assignment (BPA) to characterize the uncertainty

of system. However, it is di®erent that the probability mass can be assigned to event

sets in D–S evidence theory. In probability theory, mass probability can only be

assigned to a single event. Because of the °exibility of the basic axioms in evidence

theory, no further assumptions are needed to quantify the uncertain information of

system. Moreover, the D–S evidence theory combination rule can aggregate infor-

mation from multiple sources to a new belief assignment. Owing to these properties,

it has been used in fault diagnosis,13–16 reliability engineering,17–22 classi¯cation,23

object extraction,24 knowledge discovery,25 risk analysis,26,27 and so on.

When D–S evidence theory gained popularity in many applications, Zadeh pro-

posed criticisms that combination consequence may be counter-intuitive using clas-

sical D–S evidence theory combination rule on con°icting beliefs and provided a

compelling counter example.28 Since then, many alternative combination rules have

been introduced to resolve this issue. Yager proposed a new combination algorithm

that uses a ground probability mass assignment function instead of BPA and

attributed con°ict belief to universal set. It should be noted that there is no nor-

malization factor in the ground probability mass assignment function.29 Inagaki

introduced a new combination rule with the goal of harmonizing D–S combination

rule and Yager's rule.30 Dubois and Prade investigated the empirical and axiomatic

foundations of belief functions and possibility measures and proposed the disjunctive

combination rule to cope with con°icting beliefs and belief combinations from speci¯c

information sources which may be nonreliable, non-exhaustive, inconsistent, and

dependent.31 Smets proposed the transferable belief model based on a subjective

interpretation and then introduced an unnormalized combination rule.32 Kallel and

H�egarat-Mascle proposed a new parameterized combination rule that takes into

account a partial non-distinctness of sources between two bodies of evidence. Because

this method de¯ned separable basic belief assignments and belief densities, it can be

applied to a discrete or a continuous body of evidence.33 According to classical Bayes

analysis through a bijective mapping between Dirichlet distributions and BPA,

Josang et al. proposed the cumulative rule and averaging rule of BPA based on the

generalizations of the corresponding fusion operators for opinions.34 Yang et al.

proposed the paradox combination algorithm based on an absolute di®erence factor of
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two pieces of evidence and a relative di®erence factor of two pieces of evidence for a

speci¯c hypothesis with the consideration of local attributions to local con°ict.35

These studies show that the D–S evidence theory has been widely used and deeply

studied. However, there are two main questions that remain to be answered:

(1) How to quantify the degree of con°ict between beliefs? The con°ict factor, which

is commonly regarded as the quantitative measure of the qualitative de¯nition of

con°ict, may be attained as the wrong result of two bodies of evidence in classical

D–S evidence theory.36 In other words, the new quanti¯cation con°ict criteria

should be selected or constructed to measure the degree of di®erence between two

bodies of evidence, instead of the con°ict factor of the classical D–S evidence

theory. Moreover, construction of these criteria serves as objective foundation

about whether the combination result is counter-intuitive or not when using

classical D–S combination rule. There are many papers that deal with the

counter-intuitive results, a few of which, however, investigated the precondition

of using the new combination rule — a common underlying assumption in these

papers states that con°icts between two bodies of evidence are identi¯ed.

(2) How to classify multiple sources of evidence quanti¯cationally? With the devel-

opment of sensor techniques and information science and the demand of increased

system complexity, many bodies of evidence representing the system character

can be attained. To meet this trend, an e±cient classi¯cation algorithm is a must

in order to avoid the counter-intuitive results when multiple bodies of evidence

are collected and aggregated.

For the ¯rst question, Liu proposed the distance between betting commitments of

the two bodies of evidence according to the pignistic transformation of themselves to

quantify the degree of con°ict.36 However, the properties of matrix distance such as

non-negativity, nondegeneracy, symmetry, and triangle inequality are not rep-

resented. Fixsen and Mahler proposed a pseudo-distance,37,38 which is a distance to a

body of evidence where the event is a singleton and probability of event is equal to 1.

This confuses total certainty about ignorance with total uncertainty about all the

subsets.39 Jousselme et al. proposed a new distance considering taking the maximum

advantage of the information contained in the BPA.39 The aim of the proposed

distance is to represent a measure of performance (MOP) for identi¯cation of algor-

ithms based on D–S evidence theory. The essence of MOP is to measure the degree of

di®erence between two bodies of evidence. Moreover, the property of the metric

distance is demonstrated and the maximum distance is calculated to be equal to 1.

For the second question, many papers only represent the classi¯cation between two

bodies of evidence.25–33,36,37,39 These two bodies of evidence can be classi¯ed into two

categories: con°icting and noncon°icting evidence.

In this paper, the Jousselme distance is adopted as the criterion to quantify the

degree of con°ict between two bodies of evidence. The relationship between con-

°icting evidence and information complementarity is analyzed. A novel algorithm to
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quantify the classi¯cation of multiple sources of evidence is proposed. The rest of the

paper is organized as follows. Section 2 reviews the basis of D–S evidence theory.

Section 3 describes the interpretation between con°icting evidence and information

complementarity. Section 4 presents the stochastic interpretation for BPAs. Section 5

introduces the Jousselme distance of evidence and proposes our quanti¯cation

classi¯cation algorithm. Section 6 veri¯es the novel algorithm through two examples.

Finally, Sec. 7 concludes the main contribution of the paper.

2. D–S Evidence Theory

D–S evidence theory is represented by a ¯nite nonempty exhaustive set of mutually

exclusive possibilities called a frame of discernment, �; 2� is the power set of �,

which includes all the possible subsets of �. There are 2n elements in 2�, if � has

n elements. Let qi be the ith possibility and i ¼ 1; 2; � � � ; n, then we have

2� ¼ f�; fq1g; . . . ; fqng; fq1; q2g; fq1; q3g; . . . ; fq1; qng; . . . ;
fqn�1; qng; fq1; q2; q3g; . . . ; fq1; q2; . . . qngg ð2:1Þ

In D–S evidence theory, three basic functions are adopted to build the elementary

reasoning framework: the BPA function, the Bel function, and the Pl function.

The BPA function is a primitive of evidence theory, which is denoted by mðXÞ.
The function mðXÞ is a mapping: mðXÞ : 2� ! ½0; 1�, and satis¯es the following

conditions:

mð�Þ ¼ 0; ð2:2ÞX
X22�

mðXÞ ¼ 1: ð2:3Þ

Here, mðXÞ expresses the precise probability in which the evidence corresponding to

m supports proposition X . That is,mðXÞ is a measure of the belief attributed exactly

to hypothesis X and to none of the subsets of X . X is not only a single possible event

but also a set of multiple possible events; mð�Þ ¼ 0 means that the existing evidence

supports no element of the domain; mðXÞ ¼ 1 states that an existing evidence only

supports x in the domain.
P

x22�mðXÞ ¼ 1 guarantees the normalization of evi-

dences. The BPA for an event set is the belief assigned for the whole set. In other

words, it cannot be reassigned to any subsets of the event.

A Bel is often de¯ned by the BPA function which is represented by BelðXÞ in the

following.

BelðXÞ ¼
X
Y�X

mðY Þ ð2:4Þ

BelðXÞ represents the total amount of probability that must be distributed among

elements of X . It re°ects inevitability and indicates the total degree of belief of X and
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constitutes a lower limit function on the probability of X .40 BelðXÞ is the lower limit

of the posteriori con¯dence interval. On the other hand, the BPA function can be

obtained from the Bel by means of the M€obius inversion formula

mðXÞ ¼
X
A�X

ð�1ÞjX�AjBelðAÞ; ð2:5Þ

where j�j denotes the cardinality function. Obviously, when there are n events in �,

the following formula is satis¯ed.

0 � jAj � n A 2 2�: ð2:6Þ
A Pl is de¯ned as follows:

PlðXÞ ¼ 1� BelðX Þ ¼
X

Y\X 6¼�

mðY Þ; ð2:7Þ

where X is the negation of a hypothesis X . PlðXÞ measures the maximal amount of

probability that can be distributed among the elements in X . It describes the total

degree of belief related to X and constitutes an upper limit function on the prob-

ability of X .40 The same applies to BelðXÞ, and the Pl can be transformed into the

BPA function using the following formula

mðXÞ ¼
X
A�X

ð�1ÞjX j�jAjþ1PlðAÞ: ð2:8Þ

½BelðXÞ;PlðXÞ� is the posteriori con¯dence interval which expresses the uncer-

tainty of X . When the ignorance to proposition X is decreased, the length of interval

is diminished. ½BelðXÞ;PlðXÞ� ¼ ½0; 1� describes complete ignorance of proposition X .

This is illustrated in Fig. 1.

The fusion of multiple sources of evidence can be performed by the Dempster's

combination rule that is de¯ned in Eq. (2.9) below. Given the two BPA functions,

miðXÞ and mjðY Þ, the Dempster's combination rule can be de¯ned as

mðC Þ ¼ miðXÞ �mjðY Þ

¼
0; X \Y ¼ �X

X\Y¼C ;8X ;Y��
miðXÞ �mjðY Þ

1�
X

X\Y¼�;8X ;Y��
miðXÞ �mjðY Þ ; X \Y 6¼ �

8>><
>>: ; ð2:9Þ

( )Bel X

( )Pl X

( )Bel X

the ignorance to proposition X0 1

Fig. 1. Belief function and plausibility function.
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where miðjÞðcÞ denotes the BPA of that is supported by ith ( jth) evidence. Let

Kij ¼
X

X\Y¼�

miðXÞ �mjðY Þ: ð2:10Þ

Kij satis¯es 0 � Kij � 1 and is called the con°ict factor, which expresses the

degree of con°ict between evidences ith and jth. Kij ¼ 0 means that evidence ith and

jth have no any con°ict, while Kij ¼ 1 or 0 < Kij < 1 indicates that two sources of

evidence are in complete con°ict or in partial con°ict, respectively, to support an

opinion.

3. Information Interpretation of Con°icting Evidence

Information from multiple sources of evidence may be redundant or complementary.

Redundant information enhances the reliability of system analysis and aggregation

in information fusion. Complementary information enlarges and improves the rep-

resentation of system status. The system is more comprehensively and abundantly

expressed. The status of system is re°ected from the di®erent perspective. For

classical D–S evidence theory, only knowing that two bodies of evidence are con-

°icting is not enough to recognize which one is more important and su±cient, given

that no more information of system is attained. In this situation, these two con-

°icting bodies of evidence may be complementary to each other in expressing system

information. In other words, the evidence which is complementary on information

cannot be aggregated using classical D–S evidence theory combination rule. When

two bodies of evidence are noncon°icting with each other, they may include

redundant information. When the combination rule of D–S evidence theory is used to

aggregate the evidence involving redundant information, combination results will be

rational and e±cient. For instance, in Zadeh's famous compelling example, there are

two bodies of evidence from two doctors. One doctor thinks that the patient has

either meningitis with a probability of 0.99 or a brain tumor with a probability of

0.01. The second one believes that the probability of the patient su®ering from a

concussion and a brain tumor is 0.99 and 0.01, respectively.28 In this situation, there

is no more information about the two doctors. The two bodies of evidence can be

considered as complementary.

4. Stochastic Interpretation for BPAs

With the brief review of D–S evidence theory, we can see that a body of evidence

represents the basic belief assignment information through BPA in a situation at a

given time. A BPA can be taken as a discrete random function whose variable is a

probability distribution, mð�Þ, of 2�. Consequently, a BPA can be easily represented

using vector notation whose elements are discrete randommð�Þ of 2� and can be dealt

with by elementary vector algebra.
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De¯nition 1. Probability vector (p): p ¼ ðp1; p2; . . . ; pnÞ satis¯es the following

conditions:

0 � pi � 1; i ¼ 1; 2; . . . ; n; ð4:1ÞXn
i¼1

pi ¼ 1: ð4:2Þ

According to the de¯nition of a BPA, it can be perceived that a BPA is a special

case of probability vector which have 2n elements and can be noted as

m ¼ ðmð�Þ;mðX1Þ;mðX2Þ; . . . ;mðX2n�1ÞÞ. Consequently, the elements of m satisfy:X2n�1

i¼1

mðXiÞ ¼ 1 and 0 � mðXiÞ � 1; i ¼ 1; 2; . . . ; 2n � 1: ð4:3Þ

where Xi 2 2� and mð�Þ ¼ 0.

De¯nition 2. Stochastic matrix (P):

P ¼
p11 . . . p1n

..

. . .
. ..

.

pm1 � � � pmn

0
B@

1
CA ð4:4Þ

satis¯es that every row vector is a probability vector and is called stochastic matrix.

D�S evidence theory can fuse multiple sources of evidence and every source of

evidence is expressed by the BPA function. Consequently, every source of evidence

can be used as a row of the stochastic matrix. The BPAs of k independent sources of

evidence can form a k � 2n stochastic matrix. This matrix is also called as the mass

stochastic matrix denoted as M.

M ¼
m1ð�Þ m1ðX1Þ � � � m1ðX2n�1Þ

..

. ..
. . .

. ..
.

mkð�Þ mkðX1Þ � � � mkðX2n�1Þ

0
BB@

1
CCA; ð4:5Þ

where Xi 2 2�.

The matrix M characterizes all available information of the sources of evidence

which has to be combined to solve the fusion problem. D–S combination rule can be

applied to combine k rows of M to get fusion result. Simultaneously, it is easy to

analyze the relation between di®erent sources of evidence. When every element of the

columns M in is equal to 0, the column can be deleted and then M can be simpli¯ed.

De¯nition 3. Core vector (evidence) mc:

There are multiple row vectors to express the di®erent bodies of evidence in the

matrix M. The core vector, mc; 1 � c � k, is the row whose BPA function is the

largest in the column. This column is the one whose summation of the BPA functions

is the largest in the columns of matrix M. In application of D–S evidence theory, the

true result may be attained through combining multiple row vectors. The core vector

is the closest to the real result of the vectors in the matrix M.
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The core vector can be attained through the following method.

(1) Multiple bodies of evidence can be expressed by the stochastic matrix M. The

column sum of matrix M can be computed and then the column whose column

sum is maximum can be attained. Generally speaking, if there is more than one

column whose sum is maximum, the column with the minimum number is

attained. This column can be expressed by the following formula:

�j0 ¼ max
j

Xk
i¼1

mijð�Þ
 !

: ð4:6Þ

(2) Themaximum element of themaximum column sum can be computed. If there are

more than one element, the element whose row number is minimum is attained.

The row of this maximum element is core vector. The maximum can be noted as

mi0j0 ¼ max
i

mij0

max
j

ðP k
i¼1 mijð�ÞÞ

0
@

1
A: ð4:7Þ

5. Quanti¯cation Classi¯cation Algorithm

5.1. Jousselme distance of evidence

D–S evidence theory has been adopted to quantify uncertainty in a number of

domains: reliability engineering, design optimization, and so on. Chen et al. have

classi¯ed various uncertainties into three types: fuzziness, discord, and non-

speci¯city.41 Because D–S evidence theory is performed in the power set of frame of

discernment, it can deal with two types of uncertainty: discord and nonspeci¯city.

Jousselme et al.39 proposed the novel principle distance in order to represent the

nonspeci¯city discrepancy between two bodies of evidence. In other words, the novel

distance can quantify the di®erence between sets.

Let m1 and m2 be two BPAs on the same frame of discernment �, containing N

mutually exclusive and exhaustive hypotheses. The distance between m1 and m2 is:

dBPAðm1;m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm1 �m2ÞTDðm1 �m2Þ

r
; ð5:1Þ

where D is an 2N � 2N positively de¯ned matrix and adopted to describe the

\similarity" between the subsets of �, whose elements are

DðA;BÞ ¼ jA \ Bj
jA [ Bj ; A; B 2 2�: ð5:2Þ

In Eq. (5.1), 1
2 is needed to normalize dBPA. It is very important that the distance

satisfy a range limitation represented by the following formula.

0 � dBPAðm1;m2Þ � 1 ð5:3Þ
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Moreover, Eq. (5.1) can be rewritten as

dBPAðm1;m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðjjm1jj2 þ jjm2jj2 � 2hm1;m2iÞ

r
; ð5:4Þ

where hm1;m2i is the scalar product de¯ned as

hm1;m2i ¼
X2N
i¼1

X2N
j¼1

m1ðAiÞm2ðAjÞ
jAi \ Aj j
jAi [ Aj j

; ð5:5Þ

where Ai;Aj 2 2� for i; j ¼ 1; 2; . . . ; 2N . Then jjmjj2 is the square norm of

m:jjmjj2 ¼ hm;mi.

5.2. Classi¯cation of multiple bodies of evidence

5.2.1. Classi¯cation criterion

The Jousselme distance of evidence describes and quanti¯es the di®erence of two

bodies of evidence. This distance is de¯ned with the power set, 2�, and more °exible

than the pseudo-distance de¯ned by Fixsen and Mahler37 which can only compute the

distance of the singleton hypothesis of � between the two bodies of evidence. In other

words, the distance proposed byFixsen andMahler does not describe the nonspeci¯city

situation. It is de¯cient and localized to quantify the whole di®erence of basic belief

assignment functions in the power set that the cardinality function is not equal to 1

between the two bodies of evidence. Meanwhile, the Jousselme distance satis¯es all the

metric requirements. The di®erence of two bodies of evidence can be e±ciently

described and quanti¯ed using this distance which has the range stated above. This

range makes it possible that the di®erences among all the bodies of evidence in the �

can be attained using the bounded values. Consequently, the Jousselme distance is

selected in this paper. A threshold, �, should be given using this distance to quantify the

di®erence of multiple bodies of evidence. This can be represented as follows:

dBPAðmi;mjÞ � �; ð5:6Þ
where � is a threshold of the positive real number, 0 < � < 1. When Eq. (5.6) is sat-

is¯ed, information of the two bodies of evidencemi,mj , is regarded as complementary

on information and the two bodies of evidence are con°icting evidence. These two

bodies of evidence cannot be combined by classical D–S evidence theory combination

rule according to Sec. 3. In other words, the combined result may be counter-intuitive

using classical D–S evidence theory combination rule. When Eq. (5.6) is not satis¯ed,

information of the two bodies of evidence is redundant and classical D–S evidence

theory combination rule can be used to combine these bodies of evidence. Conse-

quently, dBPA can be considered as the classi¯cation criterion for quanti¯cation

measurement. Multiple bodies of evidence can be divided into two types: comp-

lementary information and redundant information using this measurement criterion.

Moreover, there are some subjective factors in choosing the threshold, �. The authors
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have observed that a value of the order of � ¼ 0:5 gives completely satisfactory number

results.

5.2.2. Classi¯cation processing

Multiple bodies of evidence can be expressed in the matrix M. When evidence can be

combined using the classical D–S evidence theory combination rule, multiple bodies

of evidence can be classi¯ed in order to avoid the combined counter-intuitive results.

The classi¯cation of evidence is, thus, transformed to the classi¯cation of vectors in

the matrix M. The following procedure is proposed for classi¯cation:

(1) The core vector, m
ð0Þ
c , is computed according to Sec. 4.

(2) The distance between m
ð0Þ
c and other row vector is computed, respectively, and

represented in core distance vector

d ð0Þ
c ¼ ðdBPAðmc;m1Þ; . . . ; dBPAðmc;mcÞ; . . . ; dBPAðmc;mkÞÞ; ð5:7Þ

where m
ð0Þ
c may be m1 or mk , dBPAðm ð0Þ

c ;mcÞ ¼ 0.

(3) All of the row vectors are classi¯ed into two types: complementary and redun-

dant information according to Sec. 5.2.1 in core distance vector. The two types

are represented by set C ð0Þ and Rð0Þ,

C ð0Þ ¼ ð . . . ;ml ; . . .|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dBPAðmc;miÞ��

Þ; ð5:8Þ

Rð0Þ ¼ ð . . . ;mj ; . . .|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dBPAðmc;mjÞ<�

Þ; ð5:9Þ

where 0 � l; j � k. Here, nc and nr are adopted to express the number of the

element of set C ð0Þ and Rð0Þ, respectively, and nc þ nr ¼ k. According to the

number of the element of set C ð0Þ, the following di®erent conditions are analyzed:

(a) If nc ¼ 0, the information of all vectors in the matrix M is redundant, the

classical D–S evidence theory combination rule is applied. The results of

combination are rational and robust.

(b) If nc 6¼ 0, the vectors in C ð0Þ are regarded as the new core vector, respectively.

The new classi¯cation results are obtained and represented as m
ðiÞ
c , d

ðiÞ
c , C ðiÞ

and RðiÞ, where 0 � i � k. When i is equal to nc, the computational process is

accomplished. The number of classi¯cation group, ng, is equal to nc þ 1.

The °owchart of the proposed algorithm is shown in Fig. 2.

6. Numerical Examples

In this section, two numerical examples are presented to illustrate the new approach.

The ¯rst one is adopted from Ref. 41 to address the procedure evidence classi¯cation

and the second one applies the complicated case to express the e±ciency and prac-

tical signi¯cance of the proposed method.
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Attained the core vector cm

Begin

     Load          (1, 2, , )i k=im  ,δ

     Compute                                ,( , )
A B

D A B
A B

∩
=

∪
(0)

1( ( , ), , ( , ), , ( , ))c BPA c BPA c c BPA c kd d d=d m m m m m m

Attained         ,(0)C cn Attained         ,(0)R rn

BPA ,( )c id δ≥m m

All of the evidence is redundant The vectors in         can be regarded as the 
new core vector respectively

(0)C

0cn =

Compute                                    and           using Eq.(4.7)
0 0i jm

0
1

max( ( ))
k

j ij
j

i

mα
=

= ⋅∑

Yes

No

No

No

No

Yes

Yes

Yes

     Compute                                ,( , )
A B

D A B
A B

∩
=

∪
( )

1( ( , ), , ( , ), , ( , ))i
c BPA c BPA c c BPA c kd d d=d m m m m m m

)
BPA

(( ),i
c jd δ≥m m

Attained         ( )iRAttained         ( )iC

ci n=

1i i= +

Output          ,        ,         ,( )iC ( )iR(0)C (0)R

End

Fig. 2. Flowchart of the quanti¯cation classi¯cation procedure.
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6.1. Example study-I

Example 1. There are ¯ve bodies of evidence mi; i ¼ 1; . . . 5, which have been col-

lected from a multisensor automatic target recognition system. The BPA functions of

these bodies of evidence which have three targets have been expressed in thematrixM.

First, the core vector should be attained. According to Sec. 4, �j0 ¼ �1 ¼ 2:15,

mi0j0 ¼ m31 ¼ 0:55, the core vector is m3. Second, the core distance vector dc is

computed as follows:

d
ð0Þ
c ¼ ðdBPAðm3;m1Þ; dBPAðm3;m2Þ; dBPAðm3;m3Þ;

dBPAðm3;m4Þ; dBPAðm3;m5ÞÞ
¼ ð0:079; 0:550; 0:000; 0:000; 0:000Þ

Finally, all the vectors are classi¯ed into complementary information and

redundant information according to Sec. 5.2.1. Herein, � ¼ 0:5. Set C ð0Þ and Rð0Þ can
be represented as follows:

C ð0Þ ¼ ð . . . ;mi; . . .|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dBPAðmc;miÞ��

Þ ¼ ðm2Þ;

Rð0Þ ¼ ð. . . ;mc; . . .|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dBPAðmc;mjÞ<�

Þ ¼ ðm1;m3;m4;m5Þ:

Because nc ¼ 1 6¼ 0,m2 is regarded as new core vector, according to Sec. 5.2.2(b).

The core distance vector d
ð1Þ
c can now be computed as follows:

d
ð1Þ
c ¼ ðdBPAðm2;m1Þ; dBPAðm2;m2Þ; dBPAðm2;m4Þ; dBPAðm2;m5ÞÞ

¼ ð0:557; 0:000; 0:550; 0:550Þ

Set C ð1Þ is attained as follows:

C ð1Þ ¼ ðm1;m4;m5Þ:

From the above, m2 is complementary to the information of the other bodies of

evidence. Consequently, m2 cannot be combined with other vectors in the matrix M

using the classical D–S evidence theory combinational rule. Other vectors besidesm2

can be combined with each other using the classical D–S evidence theory combina-

tional rule. The result is identical with Ref. 41.
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6.2. Example study-II

Ten bodies of evidence on � with j � j ¼ 3 are represented in the following matrix M,

using 1, 2, etc. to denote element 1, element 2 etc. in � as follows.

(1) The core vector: according to Sec. 4, �j0 ¼ �2 ¼ 2:3475, mi0j0 ¼ m22 ¼ 0:6807,

the core vector is m2.

(2) The core distance vector d
ð0Þ
c is computed as follows, based on Eq. (5.7). Herein,

D of the Jousselme distance should be ¯rst computed as:

D ¼

1:0000 0:0000 0:0000 0:5000 0:5000 0:0000 0:3333

0:0000 1:0000 0:0000 0:5000 0:0000 0:5000 0:3333

0:0000 0:0000 1:0000 0:0000 0:5000 0:5000 0:3333

0:5000 0:5000 0:0000 1:0000 0:3333 0:3333 0:6667

0:5000 0:0000 0:5000 0:3333 1:0000 0:3333 0:6667

0:0000 0:5000 0:5000 0:3333 0:3333 1:0000 0:6667

0:3333 0:3333 0:3333 0:6667 0:6667 0:6667 1:0000

0
BBBBBBBBB@

1
CCCCCCCCCA

d
ð0Þ
c ¼ ðdBPAðm2;m1Þ; dBPAðm2;m2Þ; . . . ; dBPAðm2;m10ÞÞ

¼ ð0:4941; 0:0000; 0:4212; 0:8278; 0:3631; 0:3555;

0:4253; 0:6324; 0:4398; 0:4498Þ
(3) In accordance with Sec. 5.2.1, the 10 bodies of evidence are classi¯ed into two

types. Set C ð0Þ and Rð0Þ are represented as follows:

C ð0Þ ¼ ðm4;m8Þ Rð0Þ ¼ ðm1;m2;m3;m5;m6;m7;m9;m10Þ:

(4) Because nr 6¼ 0, m4 and m8 should be regarded as the core vector according to

Sec. 5.2.2(b). When m4 is the core vector, d
ð1Þ
c can be computed as follows:

d
ð1Þ
c ¼ ðdBPAðm4;m1Þ; dBPAðm4;m3Þ; . . . ; dBPAðm4;m10ÞÞ

¼ ð0:3947; 0:5276; 0:0000; 0:5653; 0:4891; 0:4761; 0:6360; 0:4648; 0:4720Þ:
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Set C ð1Þ and Rð1Þ can be obtained as follows:

C ð1Þ ¼ ðm2;m3;m5;m8Þ Rð1Þ ¼ ðm1;m4;m6;m7;m9;m10Þ:
(5) When m8 is regarded as the core vector, the core vector, d

ð2Þ
c , set C ð2Þ, and Rð2Þ

can be computed, respectively, as follows:

d
ð2Þ
c ¼ ðdBPAðm8;m1Þ; dBPAðm8;m3Þ; dBPAðm8;m5Þ; . . . ; dBPAðm8;m10ÞÞ

¼ ð0:3639; 0:3059; 0:3707; 0:4539; 0:3554; 0:0000; 0:3920; 0:5204Þ;
C ð2Þ ¼ ðm2;m4;m10Þ Rð2Þ ¼ ðm1;m3;m5;m6;m7;m8;m9Þ:

Finally, the three groups of evidence which are combined with the classical D–S

evidence theory combination rule can be attained, as represented in Table 1. The

groups of evidence which are not combined using combination rule are also

included in Table 1. Because i ¼ nc ¼ 2, the complete classi¯cation processing is

accomplished and the three groups of evidence are attained.

(6) Classi¯cation consequence veri¯cation:

Multiple bodies of evidence have been classi¯ed and expressed in Fig. 1. To verify

the accuracy of the classi¯cation, these classi¯ed bodies of evidence can be

combined using the classical D–S evidence theory combination rule. These bodies

of evidence which are redundant in information can be combined and the com-

bination result is rational and robust. Simultaneously, the counter-intuitive

results can also be obtained when these complementary bodies of evidence are

combined. The combination results are analyzed as follows.

For Group 1, multiple bodies of evidence in set Rð0Þ can be combined one by one

and the combination consequence is represented in Table 2; m i
j is denoted as the

Table 1. The classi¯cation consequence of 10 bodies of evidence.

Group D–S combinational rule Not D–S combinational rule

1 m1;m2;m3;m5;m6;m7;m9;m10 m2;m4;m8

2 m1;m4;m6;m7;m9;m10 m2;m3;m4;m5;m8

3 m1;m3;m5;m6;m7;m8;m9 m2;m4;m8;m10

Table 2. The combination results of multiple bodies of evidence in set Rð0Þ of Group 1.

mð1Þ mð2Þ mð3Þ mð12Þ mð13Þ mð23Þ mð�Þ Kij

m1
2 m1 �m2 0.0000 0.7077 0.2042 0.0000 0.0000 0.0880 0.0000 0.4508

m1
3 m1

2 �m3 0.0000 0.7215 0.2404 0.0000 0.0000 0.0382 0.0000 0.3688

m1
5 m1

3 �m5 0.0000 0.7659 0.2186 0.0000 0.0000 0.0155 0.0000 0.3250

m1
6 m1

5 �m6 0.0000 0.8542 0.1401 0.0000 0.0000 0.0059 0.0000 0.4284

m1
7 m1

6 �m7 0.0000 0.8833 0.1145 0.0000 0.0000 0.0024 0.0000 0.4150

m1
9 m1

7 �m9 0.0000 0.9035 0.0960 0.0000 0.0000 0.0011 0.0000 0.3853

m1
10 m1

9 �m10 0.0000 0.9524 0.0483 0.0000 0.0000 0.0003 0.0000 0.3463
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combined vector ofmi andmj . From this table, the combined results do not generate

the counter-intuitive results of applying D–S evidence theory combination rule

between the multiple bodies of evidence in set C ð0Þ each other. Consequently, this can

demonstrate that the classi¯cation algorithm is rational and valid.

Second, to set C ð0Þ in Group 1, the combination can be expressed as provided

in Table 3; m2 strongly supports hypothesis 2 in the matrix M, while the vector

m4 almost completely supports hypothesis 1 in the matrix M. Moreover,

dBPAðm2;m4Þ ¼ 0:8278 and k24 ¼ 0:9131. Consequently, these two bodies of evidence

strongly contradict each other. Generally speaking, when this happens, it is believed

that the two bodies of evidence are in con°ict. In practical application, two bodies

of evidence are regarded as complementary if enough information is not available to

determine which one is more important and su±cient. Moreover, from the combi-

nation consequence ofm2 andm4 in Table 3,m 2
4 is absolutely sure that hypothesis 3

is the right hypothesis. This consequence is extremely counter-intuitive according to

the two bodies of evidence,m2 andm4. Meanwhile,m8 largely supports hypothesis 3.

This evidence is complementary to the two bodies of evidence, m2 and m4. These

three bodies of evidence are strongly in con°ict with each other. However, the

combination result is absolutely sure about hypothesis 3 from Table 3. Consequently,

this result is extremely irrational. The above analysis shows that m2, m4, and m8

are complementary to each other and cannot be combined using the classical D–S

evidence theory combination rule. To avoid the counter-intuitive results, these

bodies of evidence should be classi¯ed before using the traditional combination rule.

Based on the above analysis of the results of quanti¯cation classi¯cation, the pro-

posed algorithm can completely produce valid classi¯cation results. The results of

Table 3. The combination results of multiple bodies of evidence in set C ð0Þ of Group 1.

mð1Þ mð2Þ mð3Þ mð12Þ mð13Þ mð23Þ mð�Þ Kij

m2
4 m2 �m4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.9131

m2
8 m2

4 �m8 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.2009

Table 4. The combination results of multiple bodies of evidence in Group 2.

mð1Þ mð2Þ mð3Þ mð12Þ mð13Þ mð23Þ mð�Þ Kij

m1
4 m1 �m4 0.7671 0.0000 0.1759 0.0000 0.0570 0.0000 0.0000 0.4124

m1
6 m1

4 �m6 0.8131 0.0000 0.1647 0.0000 0.0224 0.0000 0.0000 0.5564

m1
7 m1

6 �m7 0.8098 0.0000 0.1875 0.0000 0.0030 0.0000 0.0000 0.5399

m1
9 m1

7 �m9 0.8257 0.0000 0.1738 0.0000 0.0014 0.0000 0.0000 0.4446

m1
10 m1

9 �m10 0.9119 0.0000 0.0888 0.0000 0.0006 0.0000 0.0000 0.3594

m2
3 m2 �m3 0.0000 0.7258 0.1574 0.0000 0.0000 0.1168 0.0000 0.2995

m2
4 m2

3 �m4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.9254

m2
5 m2

4 �m5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.4159

m2
8 m2

5 �m8 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.2009
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multiple bodies of evidence in set Rð0Þ are rational and reasonable and those bodies of

evidence in set C ð0Þ are counter-intuitive. This demonstrates that the proposed

algorithm is e±cient and robust in the quanti¯cation classi¯cation of multiple bodies

of evidence.

For Groups 2 and 3, it is the same as Group 1 in that the quanti¯cation classi¯-

cation is e±cient and its results are robust. For the completeness of the example, the

classi¯cation combination results of Groups 2 and 3 are presented in Tables 4 and 5,

respectively.

7. Conclusion

In this paper, the Jousselme distance has been employed to quantify the degree of

con°ict between two bodies of evidence, so as to resolve the de¯ciency of the con°ict

factor in classical D–S evidence theory. A stochastic interpretation of BPA function

is described and analyzed. Based on this, multiple sources of evidence are represented

as a stochastic matrix. This is convenient for computing and dealing with multiple

sources of evidence as well. Classi¯cation is performed before multiple sources of

evidence are combined in order to avoid the generation of the counter-intuitive

results. Consequently, the core vector of the stochastic matrix is de¯ned. A novel

quanti¯cation classi¯cation algorithm is proposed based on the Jousselme distance

and the core vector. Multiple sources of evidence are classi¯ed in two types. Finally,

two numerical examples are used to illustrate the detailed classi¯cation procedure

and to demonstrate the accuracy and e±ciency of the algorithm.
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Table 5. The combination results of multiple bodies of evidence in Group 3.

mð1Þ mð2Þ mð3Þ mð12Þ mð13Þ mð23Þ mð�Þ Kij

m1
3 m1 �m3 0.2147 0.2737 0.3145 0.0609 0.0702 0.0409 0.0250 0.3290

m1
5 m1

3 �m5 0.1837 0.3780 0.3417 0.0335 0.0344 0.0241 0.0045 0.3682

m1
6 m1

5 �m6 0.1967 0.5110 0.2555 0.0131 0.0118 0.0106 0.0013 0.4834

m1
7 m1

6 �m7 0.1745 0.5793 0.2328 0.0067 0.0014 0.0051 0.0001 0.4538

m1
8 m1

7 �m8 0.0986 0.4370 0.4587 0.0038 0.0003 0.0014 0.0000 0.5845

m1
9 m1

8 �m9 0.0996 0.4849 0.4124 0.0022 0.0001 0.0007 0.0000 0.4309

m2
4 m2 �m4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.9131

m2
8 m2

4 �m8 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.2009

m2
10 m2

8 �m10 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.6730
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