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Uncertainty is usually modeled using random variable with certain probability distribution. However, the
probability distributions of many random variables are often truncated in engineering applications. In the
procedure of reliability based design optimization for structural systems with truncated random vari-
ables, repeated function evaluations are required for different design points where the computational
costs are extremely huge. In this paper, an efficient as well as novel reliability method is proposed for
structural systems with truncated random variables which does not require repeated function evalua-
tions for the different design points. Uniformly distributed samples are generated for truncated random
variables in the supported intervals and design variables in the specified intervals to approximate cover
the entire uncertain space fully. In order to avoid repeated function evaluations and improve computa-
tional efficiency, a surrogate model is established using back-propagation (BP) neural networks which
can approximate the relationships between the inputs and system responses properly in almost entire
uncertain space using the proposed given available data. The main advantages of the proposed method
are high accuracy and effectiveness in estimating the probability of failure under different design points
which requires neither large samples nor the repeated function evaluations when compared to the exist-
ing reliability methods. Four numerical examples are investigated to demonstrate the effectiveness and
accuracy of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainty widely exists in engineering practices which can be
divided into aleatory and epistemic uncertainties [1–4]. Various
uncertainties are usually modeled using random variables. It is
well known that the supported intervals of many continuous ran-
dom variables are [�1,1] while is impossible in engineering
practices. In order to handle the problem, the probability distribu-
tions of some random variables are usually truncated. Therefore,
truncated variables are involved in many engineering applications.
For example, the volatility of material properties and physical
dimensions is modeled using truncated random variables in reli-
ability engineering. The truncated exponential distribution is usu-
ally employed to model the earthquake magnitude [5,6].

In the reliability-based design optimization (RBDO), repeated
reliability estimation is required for each configuration of the
design variable. Therefore, reliability analysis is the key step in
RBDO. Reported existing reliability analysis methods, such as the
first/s order reliability method (FORM/SORM) and Monte Carlo sim-
ulation (MCS), can be employed to calculate the probability of fail-
ure for structural systems with truncated random variables.
However, some studies pointed out that the convergence problem
may arise when the standard algorithm of the FORM is employed
for structural systems with truncated random variables [7]. To
overcome the problem, a modification of the standard FORM algo-
rithm have been proposed by Melchers et al. [7], while the most
probable point (MPP) search is also required. Du and Hu [5]
linearized limit-state function at the MPP and a reliability method
for system with truncated random variable based on the first order
saddle-point approximation is presented. They have proved that
the accuracy of their proposed method is higher than the FORM
while keeps the same efficiency. Despite these efforts, it is well
known that the MPP search is an iterative optimization process,
which is not only time-consuming for structural systems with
implicit performance function, but also needs the repeated function
evaluations. Sometimes it may fail when the MPP search process
does not converge [8]. MCS can be used for structural systems with
truncated random variables; however, the computational costs of
the MCS are extremely huge because it requires large sample sizes
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and many repeated function evaluations [8,9]. The computational
burden using MCS is extremely huge when the performance func-
tion cannot be defined explicitly.

Despite some efforts have been made, RBDO for structural sys-
tems with truncated random variables is a challenging problem.
Many classical reliability methods (such as the FORM/SORM) can
be employed to calculate the probability of failure for structural
systems with one failure mode. However, engineering system often
has multiple failure modes, and these failure modes are usually
correlated each other because they depend on the same uncertain
variables. Up to now, the research of system reliability analysis
almost had been stagnant when compared to the significant
advances of component reliability due to the complicated features
and intersections for the multiple failure modes, as well as the
many existing methods cannot estimate system probability of fail-
ure with high efficiency and accuracy [10,11]. Due to the difficul-
ties, the bounds of system probability of failure are provided by
many reported reliability methods, instead of its unique value
[12–14]. In RBDO for structural systems with truncated random
variables, sometimes it is difficult to use the classical reliability
analysis methods (such as the FORM/SORM) due to the MPP search
algorithm may completely breakdown [5,7], and the results usually
are bounded rather than unique value. Furthermore, repeated
function evaluations under different design points are required
for many existing methods. Therefore, the computational burden
by using these methods is very huge, especially when the finite ele-
ment analysis (FEA) method is used. In order to avoid the MPP
search and repeated function evaluations as well as the difficulties
of modeling the multiple failure modes, an efficient reliability
method is proposed for structural systems with truncated random
variables in this paper. The proposed method is robustness which
is suitable for structural systems with explicit or implicit functions
and even multiple failure modes. The main advantages of the pro-
posed method are high accuracy and effectiveness in estimating
the probability of failure for structural systems under different
design points because it does not require the MPP search and large
samples, as well as repeated function evaluations.

This paper is organized as follows. Section 2 provides an effi-
cient reliability method for structural systems with truncated dis-
tributions in details. Three engineering examples and one
mathematical problem are investigated in Section 3 to demon-
strate the accuracy and efficiency of the proposed method. A brief
discussion and conclusions are provided in Section 4 of the paper.
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Fig. 1. The CDFs for truncated and standard normal distributions.
2. The efficient proposed method for calculating the probability
of failure under different design points

The problem of MPP search may breakdown, and the difficulties
of modeling multiple failure modes, as well as repeated function
evaluations, are main disadvantages of the existing reliability
methods for structural systems with truncated random variables.
The computational costs for repeated function evaluations are
extremely huge, especially for systems with implicit performance
functions. In this case, every calculation of system response is a
complete finite element calculation which is time costly. To over-
come the drawbacks of the existing reliability methods and the dif-
ficulties of modeling multiple failure modes as well as improve the
accuracy, the combinations of surrogate model and MCS are con-
sidered for structural systems, and an efficient reliability method
is proposed to calculate the probability of failure for structural sys-
tems with truncated random variables.

The following steps are suggested to calculate the probability of
failure under different design points for structural systems with
truncated random variables in the proposed method.
(1) Generating uniformly distributed samples for truncated ran-
dom variables in the supported intervals and for design vari-
ables in the specified bounded intervals;

(2) Calculating system responses and using the available data to
construct a back-propagation (BP) neural network;

(3) Given input samples and calculate the probability of failure
under different design points using the trained BP network.

The detailed information for each step is given in the following
subsections.

2.1. Generating uniformly distributed samples for truncated random
variables in the supported intervals and design variables in the
specified bounded intervals

Let eXi is a continuous random variable with the probability den-
sity function (PDF) and cumulative density function (CDF) f ðeXiÞ
and FeX i

ðeXiÞ, respectively, and both of them have infinite supported
intervals. Suppose Xi denotes the truncated random variable for eXi

with the supported interval [ai, bi], ai and bi are two constants,
�1 < ai 6 x 6 bi <1. The corresponding truncated PDF f(Xi) and
CDF FXi

ðXiÞ of Xi can be respectively given by

f ðXiÞ ¼
f ðeXiÞ

FeX i
ðbiÞ � FeX i

ðaiÞ
ð1Þ

FXi
ðxiÞ ¼

1
FeX i
ðbiÞ � FeX i

ðaiÞ
FeX i
ðxiÞ � FeX i

ðaiÞ
� �

ð2Þ

For example, suppose eX is the standard normal distribution, the
CDFs for truncated random variable X with supported interval
[�2, 2] and eX are shown in Fig. 1.

The generation of pseudo-random numbers is very important
and common task in computer programming, which is very useful
in developing MCS. The mostly used pseudo-random number gen-
erators is the linear congruential generator, which can be
expressed as [15]

Xnþ1 ¼ ðcXn þ dÞmod m ð3Þ

where c is called the multiplier, d is called the increment, and m is
called the modulus of the generator.

Let ui denote a uniformly distributed sample in interval [0, 1],
the ith uniformly distributed sample in interval [a, b] can be gener-
ated by
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Fig. 3. Uniformly distributed samples in the supported intervals.
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xi ¼ aþ ðb� aÞui ð4Þ

where xi is the ith sample for random variable Xi.
According to Eq. (4), the uniformly distributed samples in an

arbitrary supported interval can be generated quickly.
Consider an arbitrary truncated random variable Xj, N uniformly

distributed samples in the supported interval [aj, bj] can be
expressed as

ð�x1
j ; �x

2
j ; � � � ; �xN

j Þ ð5Þ

where aj � x
�i

j � bj; i ¼ 1;2; � � � ;N.
Let Yj be a design variable which belongs to the specified inter-

val ½YL
j ;Y

U
j �. By the same way, N uniformly distributed samples for

design variable Yj in its specified interval ½YL
j ;Y

U
j � can be expressed

as

ð�y1
j ; �y

2
j ; � � � ; �yN

j Þ ð6Þ

where YL
j � �yi

j � YU
j ; i ¼ 1;2; � � � ;N.

Uniformly distributed samples in the supported and specified
intervals for both truncated random variables and design variables
can almost cover the entire uncertain space fully. For example,
X1, X2 are two truncated random variables which follow the Gum-
bel and the standard normal distributions, respectively, i.e.
X1 � G(3, 1), X2 � N(0, 1), and the supported intervals for X1, X2

are respectively [�5,5] and [�3,3]. 1000 samples in the uncertain
space generated according to the corresponding CDFs by using
MCS directly, and the proposed method are shown in Figs. 2 and
3, respectively. According to Figs. 2 and 3, we know that a small
sizes of uniformly distributed samples can approximate cover the
entire uncertain space properly and fully for both design and trun-
cated random variables, while the samples generated by MCS
according to the corresponding CDFs are concentrated on the mean
values of variables which cannot cover the entire uncertain space
fully and successfully.

2.2. Calculating system responses and using the available data to
construct a BP neural network

Neural network has been successfully applied in many fields
such as earthquake magnitude prediction [16], reliability analysis
[17], forecasting and fault diagnosis [18,19] etc. There are many
types of neural networks while the BP neural network with three
layers (input layer, hidden layer and output layer) is adopted for
its capability of approximating any continuous functions properly.
The diagram of a BP neural network with multi-inputs and one
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Fig. 2. Samples generated using MCS according to the corresponding CDFs.
output or multi-outputs are shown in Figs. 4 and 5, respectively.
The first and second inputs in Figs. 4 and 5 are designed for input
random variables and design variables, respectively.

In order to construct a BP neural network correctly, the avail-
able data for training the BP neural network should be given firstly.
There are two cases should be respectively considered, i.e., one or
multiple failure modes in structural systems.

(1) One failure mode in structural systems

Suppose the performance function of system is Z = g(X, Y), the

jth system response under given input samples �xj ¼ ð�xj
1; �x

j
2; � � � ; �x

j
nÞ

and �yj ¼ ð�yj
1; �y

j
2; � � � ; �y

j
pÞ can be calculated as

�zj ¼ gð�xj; �yjÞ ð7Þ

N samples of system responses can be expressed as

ð�z1;�z2; � � � ;�zNÞ ð8Þ

(2) Multiple failure modes in structural systems
Suppose there are m failure modes in system which can be

expressed as

Z1 ¼ g1ðX;YÞ
Z2 ¼ g2ðX;YÞ

..

.

Zm ¼ gmðX;YÞ

ð9Þ
, ,

Input layer Hidden layer Output layer

Fig. 4. A BP neural network with multi-inputs and one output.
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Let Z = (Z1, Z2, � � �, Zm), N samples of system responses can be
expressed as

ð�z1; �z2; � � � ; �zNÞ ð10Þ

According to Eqs. 5, 6, 8, and 10, the available data of training BP
neural network for structural systems with one or multiple failure
modes can be respectively given by

ð�xj; �yj and �zj; j ¼ 1;2; � � � ;NÞ ð11Þ
ð�xj; �yj and�zj; j ¼ 1;2; � � � ;NÞ ð12Þ

It should be noted that in engineering practices, the system per-
formance function usually cannot be determined using an explicit
function. Therefore, FEA method should be employed to calculate
system responses. For more detailed information about FEA, please
see Ref. [20].

The basic principles of constructing a BP neural network and
learning algorithms as well as choosing the activation functions
are omitted in this paper, but these can be found in Ref. [21].

Since the uniformly distributed samples of the supported and
specified intervals have almost covered the entire uncertain space
fully, so the BP neural network is trained using the available data
which can approximate the relationships between the inputs and
system responses properly in the entire uncertain space. The com-
putational efficiency by the trained BP neural network is higher
than other classical reliability methods because it not only does
not need the MPP search and repeated performance function
evaluations, but also the approximate system responses can be
calculated quickly, especially when the performance function
cannot be defined explicitly. In this case, FEA should be used to
calculate the system responses. However, every calculation of
system response is a complete finite element calculation which is
time costly.
Fig. 7. The trained BP neural network with one output.
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2.3. Calculate probability of failure under different design points using
the trained BP neural network

Given a truncated random variable Xi with the supported inter-
val [ai, bi] and the truncated CDF FXi

, the samples generated using
MCS and the inverse transformation method can be expressed as
[22]

xj
i ¼ F�1

Xi
ðuj

iÞ ð13Þ

where F�1
Xi

is the inverse function of FXi
, and uj

i is uniformly distrib-
uted in interval [0,1]. From Eq. (13), the samples for arbitrary trun-
cated random variable can be generated using MCS and the inverse
transformation method easily.

The sampling process is shown in Fig. 6.
Let xj be the jth sample for truncated random vector X = (X1,

X2, � � �, Xn), and xj ¼ ðxj
1; x

j
2; � � � ; x

j
nÞ. yjjðY1¼yj

1 ;Y2¼yj
2 ;���;Yk¼yj

pÞ
denotes the

jth sample for design vector Y = (Y1, Y2, � � �, Yp) under the design

points Y1 ¼ yj
1;Y2 ¼ yj

2; � � � ;Yp ¼ yj
p. For example, Yi is a design var-

iable with the lower and upper bounds of YL
i and YU

i , respectively.

YijYi¼yj
i

denotes the jth design point for Yi is yj
i , that is, Yi ¼ yj

i, and yj
i

is an arbitrary value in the specified interval ½YL
i ;Y

U
i �. From the

trained BP neural network with one or multi-outputs, the relation-
ships between the inputs and system responses can be shown in
Figs. 7 and 8, respectively.

For a system with one failure mode, the probability of failure
under the design points Y1 ¼ yj

1;Y2 ¼ yj
2; � � � ;Yp ¼ yj

p can be calcu-
lated as

Pf jðY1¼yj
1 ;Y2¼yj

2 ;���;Yp¼yj
pÞ
¼ 1

N

XN

j¼1

I zjjðY1¼yj
1 ;Y2¼yj

2 ;���;Yp¼yj
pÞ
< 0

h i
ð14Þ

where I[�] is the indicator function, which equals to 1 if [�] is true
and 0 if [�] is false.

For a series system with m failure modes, the occurrence of any
failure mode will lead to failure of the system. The system
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Table 1
Detailed information of truncated random variables.

Variable Mean
value

Standard
deviation

Distribution
type

Supported
interval

B 200 0.2 Normal [199.4, 200.6]
C 80 0.2 Normal [79.4, 80.6]
D 20 0.2 Normal [19.4, 20.6]
L1 200 1 Normal [197, 203]
L2 400 1 Normal [397, 403]
L3 600 1 Normal [597, 603]
L4 800 1 Normal [797, 803]
L5 1000 1 Normal [997, 1003]
L6 1200 1 Normal [1197, 1203]
L 1400 1 Normal [1394, 1403]
P1 15 1.5 Gumbel [5, 19]
P2 15 1.5 Gumbel [5, 19]
P3 15 1.5 Gumbel [5, 19]
P4 15 1.5 Gumbel [5, 19]
P5 15 1.5 Gumbel [5, 19]
P6 15 1.5 Gumbel [5, 19]
Ea 70 7 Normal [49, 91]
Ew 8.75 0.875 Normal [6.125,11.375]
S 25 2.5 Gumbel [16, 35]
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probability of failure under the design points Y1 ¼ yj
1;Y2 ¼ yj

2;

� � � ;Yp ¼ yj
p can be calculated as

Pf jðY1¼yj
1 ;Y2¼yj

2 ;���;Yp¼yj
pÞ
¼ 1

N

XN

j¼1

I
[m
i¼1

zj
ijðY1¼yj

1 ;Y2¼yj
2 ;���;Yp¼yj

pÞ
< 0

" #
ð15Þ

Let

Sj
min ¼min zj

1jðY1¼yj
1
;Y2¼yj

2
;���;Yp¼yj

pÞ
; � � � ; zj

mjðY1¼yj
1
;Y2¼yj

2
;���;Yp¼yj

pÞ

h i
; ð16Þ

the probability of failure for a series system under the design points
Y1 ¼ yj

1; Y2 ¼ yj
2; � � � ;Yp ¼ yj

p can be rewritten as

Psys
f jðY1¼yj

1 ;Y2¼yj
2 ;���;Yp¼yj

pÞ
¼ 1

N

XN

j¼1

I Sj
min < 0

h i
ð17Þ

For a parallel system with m failure modes, the occurrence of all
failure modes will lead to failure of the system. The system proba-
bility of failure under the design points Y1 ¼ yj

1;Y2 ¼ yj
2; � � � ;Yp ¼ yj

p

can be calculated as
rmax ¼

P6

i¼1
PiðL�LiÞ
L L3 � P1ðL2 � L1Þ � P2ðL3 � L2Þ

� �
0:5AB2þE

E

AB

�
1

12 AB3 þ AB
0:5AB2þEa

Ew
DCðBþDÞ

ABþEa
Ew

DC

� �
� 0:5B

� �2

þ 1
12

Ea
Ew

CD3 þ Ea
Ew

CD 0:5D
�

Pf jðY1¼yj
1 ;Y2¼yj

2 ;���;Yp¼yj
pÞ
¼ 1

N

XN

j¼1

I
\m
i¼1

zj
ijðY1¼yj

1 ;Y2¼yj
2 ;���;Yp¼yj

pÞ
< 0

" #
ð18Þ

Let

Sj
max ¼ max zj

1jðY1¼yj
1
;Y2¼yj

2
;���;Yp¼yj

pÞ
; � � � ; zj

mjðY1¼yj
1
;Y2¼yj

2
;���;Yp¼yj

pÞ

h i
; ð19Þ

the probability of failure for a parallel system under the design
points Y1 ¼ yj

1;Y2 ¼ yj
2; � � � ;Yp ¼ yj

p can be rewritten as

Psys
f jðY1¼yj

1
;Y2¼yj

2
;���;Yp¼yj

pÞ
¼ 1

N

XN

j¼1

I½Sj
max < 0� ð20Þ
3. Numerical examples

In this Section, three engineering examples and one mathemat-
ical example are investigated to demonstrate the efficiency as well
as the accuracy of the proposed method. The first example is a com-
posite beam with 19 independent truncated random variables and
one design variable; the second example is a cantilever beam-bar
with three failure modes and one design variable, the third example
is a parallel system with two failure modes and one design variable,
and the fourth example is a truss system with two failure modes
and two design variables. The numbers of hidden nodes in the con-
structed BP neural network are 10 and 20 for examples 2, 3 and 1, 4,
respectively. The training function of all examples is ‘‘trainlm’’, and
the transfer functions for hidden and output layers are ‘‘tansig’’ and
‘‘purelin’’, respectively. Furthermore, the results using MCS method
with the large samples are used as a reference for both the accuracy
and efficiency comparisons.

3.1. Example one-A composite beam

A composite beam with 19 independent variables, as shown in
Fig. 9, is employed to demonstrate the effectiveness and accuracy
of the proposed method for the structural system with only one
failure mode. The maximum stress of the beam is calculated by [8]
a
w

DCðBþDÞ
þEa

Ew

�
þ B� 0:5AB2þEa

Ew
DCðBþDÞ

ABEa
Ew

DC

� ��



95 96 97 98 99 100 101 102 103 104 105

1

1.5

2

2.5

3

3.5

x 10
-3

A

P
ro

ba
bi

lit
y 

of
 fa

ilu
re

Proposed method

MCS

Fig. 11. Probabilities of failure under different design points.

Table 2
Probabilities of failure under different design points.

A(design point) Proposed methodPsys
f MCS Psys

f

95 0.0034 0.0033
97 0.0027 0.0026
99 0.0022 0.0021
101 0.0017 0.0017
103 0.0013 0.0014
105 0.0010 0.0010

Total function evaluations 1000 1,000,000 � 6

P

L L

M

T

Fig. 12. A cantilever beam-bar.

Table 3
Detailed information of truncated random variables.

Variable Mean
value

Standard
deviation

Distribution
type

Supported
interval

T 250 100 Normal [0, 550]
M 200 50 Normal [50, 350]
P 60 10 Normal [30, 90]
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where L1, L2, � � �, L6and L are corresponding length from the left
node measured in mm; Ea, Ew are Young’s modulus in GPa;
P1, P2, � � �, P6 are applied loads at six different locations along the
beam in kN, A, C, B and D are wide and high of the beam in mm,
respectively. In order to keep the composite beam in safe domain,
the allowable strength should bigger than the maximum stress.
Therefore, the performance function can be determined by
Z ¼ S� rmax

where S is the allowable strength.
A is taken as a design variable with the lower and upper bounds

of 95 and 105, respectively. The detailed information of the
truncated random variables is given in Table 1.

This example with the high nonlinear performance function is
used to demonstrate the accuracy of the proposed method; 1000
uniformly distributed samples are respectively generated for the
design and truncated random variables in the specified intervals
and supported intervals, the corresponding system responses and
input uniformly distributed samples are used as available data to
train the BP neural network. The training process and the probabil-
ity of failure under different design points are shown in Figs. 10
and 11 and Table 2, respectively.

From Table 2 and Fig. 11, we can conclude that a small sample
sizes can cover the entire uncertain space properly and fully, and
the constructed BP neural network can approximate the relation-
ships between the inputs and outputs properly by using the pro-
posed available data. The results calculated by the proposed
method are almost identical to the results calculated using MCS,
while the total computational costs are significantly reduced. For
example, 1,000,000 numbers of samples are used to calculate the
probability of failure under each design point, then the total num-
bers of function evaluations are 1,000,000 � 6 for MCS while the
total function evaluations by the proposed method are only 1000.

3.2. Example two – A cantilever beam-bar

A cantilever beam-bar system [11], shown in Fig. 12, is
employed to demonstrate the accuracy and effectiveness of the
proposed method for structural systems with multiple failure
modes. In this example, three failure modes are considered, and
the corresponding performance function for three failure modes
are determined by

Z1 ¼ T � 5P=16
Z2 ¼ M � LP=3
Z3 ¼ M þ 2LT � LP

This cantilever beam-bar system is considered as a series sys-
tem because any failure mode occurs; the system is failing. L is
taken as a design variable with the lower and upper bounds of
4.5 and 5.5, respectively. The detailed information of the truncated
random variables is given in Table 3.

In this example, 500 uniformly distributed samples are respec-
tively generated for the design and truncated random variables in
the specified intervals and supported intervals, the corresponding
system responses and input uniformly distributed samples are
used as available data to train the BP neural network. The training
process and the probability of failure under different design points
are shown in Fig. 13 and 14 and Table 4, respectively.

From Table 4 and Fig. 14 we know that the results obtained by
the proposed method under different design points are almost
identical to the results calculated using MCS, while the total func-
tion evaluations of the proposed method are only 500 � 3 when
compared to the MCS with 1,000,000 � 3 � 6.

3.3. Example 3 – a parallel system

Consider a parallel system with two failure modes, and the cor-
responding performance functions are given by

Z1 ¼ X1X2=X4 þ X3 � 10
Z2 ¼ X2

1=X3 þ 2X2 � X4 � 6

X4 is taken as a design variable with the lower and upper bounds 3
and 7, respectively. X1, X2, X3 are truncated random variables, and
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Fig. 13. Training process for the BP neural network.
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Fig. 14. Probabilities of failure under different design points.

Table 4
Probabilities of failure under different design points.

L(design point) Proposed method Psys
f MCS Psys

f

4.5 0.0203 0.0204
4.7 0.0242 0.0244
4.9 0.0288 0.0289
5.1 0.0343 0.0345
5.3 0.0407 0.0404
5.5 0.0484 0.0483

Total function evaluations 500 � 3 1,000,000 � 3 � 6

Table 5
Detailed information of truncated random variables.

Variable Mean
value

Standard
deviation

Distribution
type

Supported
interval

X1 2 1 Normal [0, 5]
X2 5 1 Normal [2, 8]
X3 10 1 Normal [7, 13]
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Fig. 15. Training process for the BP neural network.
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Fig. 16. Probabilities of failure under different design points.

Table 6
Probabilities of failure under different design points.

X4(design point) Proposed method PSYS
f MCS PSYS

f

3 0.0141 0.0135
4 0.0310 0.0308
5 0.0539 0.0557
6 0.0821 0.0836
7 0.1158 0.1121

Total function evaluations 250 � 2 1,000,000 � 2 � 5
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the detailed information of these truncated random variables are
shown in Table 5.

A parallel system with two failure modes is considered in this
example, 250 uniformly distributed samples are respectively
generated for the design and truncated random variables in the
specified intervals and supported intervals, the corresponding
system responses and input uniformly distributed samples are
used as available data to train the BP neural network. The training
process and the system probability of failure under different design
points are shown in Figs. 15 and 16 and Table 6, respectively.

From Table 6 and Fig. 16, we know that the results obtained by
the proposed method under different design points are almost
identical to the results calculated using MCS, while the total
function evaluations of the proposed method are only
250 � 2when compared to the MCS with 1,000,000 � 2 � 5.
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Fig. 17. A truss with six members.

Table 7
Detailed information of truncated random variables.

Variable Mean
value

Standard
deviation

Distribution
type

Supported
interval

P1 495 10 Normal [465, 525]
P2 500 10 Normal [470, 530]
A1 � A4 8 0.5 Normal [6.5, 9.5]
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Fig. 18. Training process for the BP neural network.
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Fig. 19. Probabilities of failure under the different design points.

Table 8
Probabilities of failure under different design points.

A5(design point) A6(design point) Proposed method PSYS
f MCS PSYS

f

7 9 0.0540 0.0543
7.5 8.5 0.0314 0.0312
8 8 0.0193 0.0195
8.5 7.5 0.0131 0.0133
9 7 0.0097 0.0095
9 8.5 0.0036 0.0037
9 9 0.0029 0.0031

Total No. of simulations 500 100,000 � 7
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3.4. Example 4 – a truss system

A linear-elastic truss system with six members [20], shown in
Fig. 17, the maximum allowable displacements for nodes 2 and 5
are assumed as 0.0125 and 0.021, respectively, the performance
function of the truss system are defined as

Z1 ¼ 0:0125� jU2yj
Z2 ¼ 0:0210� jU5yj

where U2y and U5y denote the displacement of nodes 2 and 5 in
y-axis, and both of them are measured in (in).

Ai(i = 1, 2, � � �, 6) are cross sectional areas measured in in2.
(P1, P2) are the applied external loads measured in lb;
E = 1.9 � 106 is the elastic modulus in lb/in2. A5 and A6 are design
variables with the lower and upper bounds of 7 and 9, respectively.
The detailed information of truncated random variables is given in
Table 7.

In this example, 500 uniformly distributed samples are respec-
tively generated for the design and truncated random variables in
the specified intervals and supported intervals, the corresponding
system responses and input uniformly distributed samples are
used as available data to train the BP neural network. The training
process and the probability of failure under different design points
are shown in Figs. 18 and 19 and Table 8, respectively.

This example is a series system with two failure modes, the FEA
method should be used to calculate system response because the
system performance functions are implicit functions. MCS–FEA
method with 100,000 samples is used to calculate system probabil-
ity of failure under the each design point, as well as references for
the accuracy comparisons. From Table 8 and Fig. 19 we know that
the results obtained by the proposed method under different
design points are almost identical to the results calculated using
MCS, while the total No. of simulations of the proposed method
are only 500 when compared to the MCS–FEA with 100,000 � 7.
It is worth to note that the more design points we calculate, the
more function evaluations will be needed for the MCS–FEA
method. However, this is not true for the proposed method. This
example shows that the computational efficiency of the proposed
method for structural systems with implicit functions is higher
than the MCS–FEA method significantly.
4. Conclusions

Due to the realistic restricting, truncated random variables are
often encountered in many engineering applications. An efficient
reliability method for structural systems with truncated random
variables is proposed in this paper. The main features of the pro-
posed method are that uniformly distributed samples for truncated
random variables in the supported intervals and design variables in
the specified bounded intervals are respectively generated, and the
generated samples, as well as system responses, are taken as
available data to train the constructed BP neural network. Since
the uniformly distributed samples can approximate cover the
entire uncertain space properly and fully, therefore, the trained
BP neural network can approximate the relationships between
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the inputs and system responses properly in almost entire uncer-
tain space. The trained BP neural network is used as the surrogate
model in reliability calculation which not only improves computa-
tional efficiency significantly, but also the MPP search is avoided.
The four examples have shown that the proposed method is
effectiveness because it requires neither repeated function evalua-
tions nor the large samples while keeps high accuracy when
compared to MCS. Moreover, the four examples have also shown
that the proposed method is robustness because it can be used
for structural systems with explicit or implicit performance
functions without the MPP search.

It should be noted that all truncated random variables are
assumed mutually independent in this paper. Reliability sensitivity
analysis for structural systems with dependent truncated random
variables will be investigated in our future works.
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