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Abstract
Purpose – Recently, fractional differential equations have been used to model various physical and
engineering problems. One may need a reliable and efficient numerical technique for the solution of these
types of differential equations, as sometimes it is not easy to get the analytical solution. However, in general,
in the existing investigations, involved parameters and variables are defined exactly, whereas in actual
practice it may contain uncertainty because of error in observations, maintenance induced error, etc.
Therefore, the purpose of this paper is to find the dynamic response of fractionally damped beam
approximately under fuzzy and interval uncertainty.
Design/methodology/approach – Here, a semi analytical approach, variational iteration method (VIM),
has been considered for the solution. A newly developed form of fuzzy numbers known as double parametric
form has been applied to model the uncertainty involved in the system parameters and variables.
Findings – VIM has been successfully implemented along with double parametric form of fuzzy number to
find the uncertain dynamic responses of the fractionally damped beam. The advantage of this approach is
that the solution can be written in power series or compact form. Also, this method converges rapidly to have
the accurate solution. The uncertain responses subject to impulse and step loads have also been computed and
the behaviours of the responses are analysed. Applying the double parametric form, it reduces the
computational cost without separating the fuzzy equation into coupled differential equations as done in
traditional approaches.
Originality/value – Uncertain dynamic responses of fuzzy fractionally damped beam using the newly
developed double parametric form of fuzzy numbers subject to unit step and impulse loads have been
obtained. Gaussian fuzzy numbers are used to model the uncertainties. In the methodology using the alpha
cut form, corresponding beam equation is first converted to an interval-based fuzzy equation. Next, it has
been transformed to crisp form by applying double parametric form of fuzzy numbers. Finally, VIM has been
applied to solve the same for the general fuzzy responses. Various numerical examples have been taken in to
consideration.
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1. Introduction
In the recent years, arbitrary order (fractional) differential equations have been used to
model various physical and engineering problems. Many important works have been
reported regarding fractional calculus in the past few decades. Related to this field, several
excellent books (Samko et al., 1993; Miller and Ross, 1993; Oldham and Spanier, 1974;
Kiryakova, 1993 and Podlubny, 1999; Kilbas et al., 2006) have also been written by different
authors. These books give an extensive review on this field which may help the reader to
understand the basic concepts of fractional calculus. The advantages of fractional order
derivatives considering the differential equations has been excellently described by Almeida
et al. (2016). They have mentioned that fractional differential equations can model various
problems with high-order dynamics and complex nonlinear phenomena more efficiently
than general differential equations. It occurs mainly for two reasons; first, the freedom is to
choose the arbitrary order of the derivative and integral operators without restricting the
integer-order only. Second, fractional order derivatives depend on not only local conditions
but also the past. By considering fractional derivatives, one may have an infinite choice of
derivative orders for considerations, and then it is easy to find the fractional differential
equation which describes the dynamics of the model in a better way. In this regard, various
examples and experimental data have been considered by Almeida et al. (2016). Also, they
have observed that experimental data, where non-integer derivatives allow the solution
curve to model more efficiently the problems. Moreover, Bagley and Torvik (1983a, 1983b,
1985) have shown that the viscoelastic damping of structures defined by fractional
derivatives has various important features. They explained that these models are based on
accepted molecular theories which govern the mechanical behaviour of the media. Also, they
have given that the second law of thermodynamics are satisfied by these models. Finally,
only few parameters are required to define the viscoelastic properties of these models.

However, many authors have developed various methods to solve arbitrary order
ordinary and partial differential equations and integral equations of physical systems.
Suarez and Shokooh (1997) used an eigenvector expansion method for the solution of a
mechanical spring-mass system containing fractional derivatives, and the results obtained
are found quite satisfactory. The same type of problem is also studied by Yuan andAgrawal
(2002) using a numerical technique when the damping factor is defined as fractional.
Recently, Behera and Chakraverty (2013c, 2015) studied numerical solution of fractionally
damped beam using homotopy perturbation method. Also, dynamic responses of
fractionally damped spring mass system have been investigated by Chakraverty and
Behera (2013). Very recently, Escalante-Martínez et al. (2016) have presented theoretical as
well as experimental approach to find the viscous damping coefficient in the spring-mass
viscodamper system. There, the authors have analysed the nonlocal damping model
considering fractional derivatives. Different theories and applications of fractional
differential equations can be found in Agrawal (2004), Odibat and Momani (2008), Jumarie
(2009), Wei et al. (2010), Qian et al. (2010), Rahimy (2010), G�omez-Aguilar et al. (2016, 2017)
and Yépez-Martínez et al. (2016).

In general, system parameters, initial and boundary conditions involved in the modelling
problems are considered as deterministic or defined exactly. But, rather than the
deterministic value, we may have only the vague, imprecise and incomplete information
about the variables and parameters being a result of errors in measurement, observations,
experiment, applying different operating conditions or it may be maintenance induced error,
etc. which are uncertain in nature. Basically, these uncertainties can be modelled through
probabilistic, interval and fuzzy theory. In probabilistic practice, the variables of uncertain
nature are assumed as random variables with joint probability density functions.
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Unfortunately, probabilistic methods may not able to deliver reliable results at the required
precision without sufficient experimental data. It may be because of the probability density
functions involved in it. As such, in the recent decades, interval analysis and fuzzy theory
are becoming powerful tools for many real-life applications for uncertainty modelling. In
these approaches, the uncertain variables and parameters are represented by interval and
fuzzy numbers, vectors or matrices. Moreover, intervals are subcase of fuzzy numbers.
Hence, we have used fuzzy set theory and interval solutions are obtained as special cases.

Fuzzy set theoretical concept was first developed by Zadeh (1965), which has been
further used for the uncertainty analysis of various problems (Hanss and Turrin, 2010; Rao
et al., 2010; Farkas et al., 2012; Behera and Chakraverty, 2013a, 2013b; Tapaswini and
Chakraverty, 2014a, 2014b; Tapaswini et al., 2015) in a wide range. As both fractional and
fuzzy play a vital role in the modelling and design process, various attempts have been
made to combine the both. In this regard, some recent contributions on the theory of fuzzy
fractional modelling may be seen as follows. The concept of fuzzy fractional differential
equation was introduced recently by Agrawal et al. (2010). Fractional differential equation
with the fuzzy initial condition has been investigated by Arshad and Lupulescu (2011).
Differential transform method is applied by Mohammed et al. (2011) for solution of fuzzy
fractional initial value problems. Boundary value problem for fuzzy fractional differential
equations with finite delay has been solved byWang and Liu (2011). Salahshour et al. (2012)
developed Riemann–Liouville differentiability by using Hukuhara difference called
Riemann–Liouville H-differentiability and solved fuzzy fractional differential equations by
Laplace transform. Existence and uniqueness of the solution is studied by Karthikeyan and
Chandran (2011) for functional fractional fuzzy impulsive differential equations. Jeong (2010)
discussed existence and uniqueness results for fuzzy fractional differential equations with
infinite delay. However, Ahmad et al. (2013) implemented Zadeh’s extension principle for
solving fuzzy fractional differential equations. Very recently, Chakraverty and Behera (2015)
investigated the solution procedure for the uncertain dynamic responses of fuzzy
fractionally damped discrete system called a mechanical spring-mass system.

Recently, variational iteration method (VIM) is found to be a powerful tool for the
analysis of linear and non-linear physical problems. VIM was first developed by He (1999,
2000) and was successfully applied to solve various linear and non-linear differential
equations of scientific and engineering problems. Very recently, VIM has been applied to a
wide class of other physical problems (Maidi and Corriou, 2013; Wazwaz, 2009; Momani
et al., 2006; Huang and Liu, 2013; Hemeda, 2008; He, 2007; Abulwafa et al., 2008).

In the present analysis, VIM is applied for the numerical solution of uncertain dynamic
response of a fuzzy fractionally damped beam with fuzzy initial condition. Uncertainty in
the initial condition is defined in term of fuzzy numbers. In the solution procedure, newly
developed double parametric form of fuzzy numbers are used. Unit step and impulse loads
are considered for the present analysis. Literature review reveals that fuzzy differential
equations are always converted to two crisp differential equations in general to obtain the
solution bounds. But in the proposed methodology, the fuzzy differential equation has been
converted to a single crisp differential equation using double parametric form of fuzzy
numbers (Behera et al., 2015) and then the corresponding crisp differential equation is solved
to obtain the final fuzzy solution by substituting the parametric values.

This paper is organized as follows. In Section 2, some basic preliminaries related to
the present investigation are given. Basic idea of VIM has been discussed in Section 3.
Followed by this in Section 4, VIM has been applied with the proposed technique to
solve the fuzzy fractionally damped beam. After that the uncertain responses subjected
to unit step and impulse loads have been analysed in Section 5. Next, numerical results
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and discussion for various parameters are presented in Section 6. In the last section
conclusion has been drawn.

2. Preliminaries
In this section, we present some notations, definitions (Ross, 2004; Zimmermann, 2001)
which are used further in this paper.

Definition 2.1 Fuzzy set
A fuzzy setŨ on the real line R is defined as the set of ordered pairs such that:

~U ¼ x; m ~U xð Þ� �jx 2 R; m ~U xð Þ 2 0; 1½ �� �
where, mŨ (x) is called the membership function.

Definition 2.2 Fuzzy number
A fuzzy numberŨ is convex normalised fuzzy setŨ of the real line R such that:

m ~U xð Þ : R ! 0; 1½ �; 8 x 2 R
� �

where, mŨ is called themembership function of the fuzzy set and it is piecewise continuous.
Definition 2.3 Gaussian Fuzzy Number (GFN)
Let us now define an arbitrary asymmetrical Gaussian fuzzy number, Ũ = (d , s l, s r).

Themembership function mŨ ofŨwill be as follows:

mU xð Þ5
exp �ðx� d Þ2=2s 2

l

h i
for x# d

exp �ðx� d Þ2=2s 2
r

h i
for x � d

8 x 2 R

8><
>:

where, the modal value is denoted as d and s l, s r denote the left-hand and right-hand
spreads (fuzziness) corresponding to the Gaussian distribution. For symmetric
Gaussian fuzzy number, the left-hand and right-hand spreads are equal, i.e. s l = s r = s .
So the symmetric Gaussian fuzzy number may be written as Ũ = (d , s , s ) and
corresponding membership function may be defined as mŨ (x) = exp{–b (x – d )2} V x [
R where, h = 1/2s 2. The symmetric Gaussian fuzzy number in parametric can be
represented as:

~U ¼ u rð Þ; u rð Þ½ � ¼ d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� loge rð Þ

h

s
; d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� loge rð Þ

h

s2
4

3
5; where; r 2 0; 1½ �

Definition 2.4 Single parametric form of fuzzy numbers
The triangular fuzzy number Ũ = (a, b, c) can be represented with an ordered pair of

functions through r – cut approach as:

~U rð Þ ¼ u rð Þ; u rð Þ½ � ¼ b� að Þr þ a; � c� bð Þr þ c
� �

where; r 2 0; 1½ �

The r – cut form is known as parametric form or single parametric form of fuzzy numbers.
It may be noted that the lower and upper bounds of the fuzzy numbers satisfy the

following requirements:
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� u rð Þ is a bounded left continuous non-decreasing function over [0, 1].
� ū(r) is a bounded right continuous non-increasing function over [0, 1].
� u rð Þ#u rð Þ; 0# r# 1.

Definition 2.5 Double parametric form of fuzzy number
Using the parametric form as discussed in Definition 2.4, we have ~U rð Þ ¼ u rð Þ; u rð Þ½ �:

Now onemay write this as crisp number with double parametric form:

~U r; bð Þ ¼ b u rð Þ � u rð Þð Þ þ u rð Þwhere b 2 0; 1½ �:

It is worth mentioning that the lower and upper bounds in single parametric form may be
obtained if we put b = 0 and 1 respectively in the above double parametric form. This may
be represented as ~U r; 0ð Þ ¼ u rð Þ andŨ(r, 1) = ū(r).

Definition 2.6 Fuzzy arithmetic
For any two arbitrary fuzzy numbers ~x ¼ x rð Þ; x rð Þ½ �, ~y ¼ y rð Þ; y rð Þ� �

and scalar k, the
fuzzy arithmetic is defined as follows:

� ~x ¼ ~y if and only if x rð Þ ¼ y rð Þ and x rð Þ ¼ y rð Þ:
� ~x þ ~y ¼ x rð Þ þ y rð Þ; x rð Þ þ y rð Þ� �
� ~x�~y ¼ min Sð Þ;max Sð Þ� �

where: S¼ x rð Þ� y rð Þ;x rð Þ� y rð Þ;x rð Þ� y rð Þ;x rð Þ��
y rð Þg

� k~x ¼ kx rð Þ; kx rð Þ½ �; k < 0
kx rð Þ; kx rð Þ½ �; k � 0

	

3. Basic idea of variational iteration method (He, 1999, 2000)
To illustrate the basic idea of the technique, we consider the following general nonlinear
system:

L s tð Þ½ � þ N s tð Þ½ � ¼ z tð Þ (1)

where, L is a linear operator, N is a nonlinear operator and z(t) is a given continuous
function.

The basic character of the method is to construct a correction functional for equation (1)
as follows:

snþ1 tð Þ ¼ sn tð Þ þ
ðt
0

l tð Þ Lsn tð Þ þ Nŝn tð Þ � z tð Þ� �
dt (2)

where l is a general Lagrangian multiplier which can be identified via variational theory. sn
is the nth approximate solution and s^n denotes a restricted variation, i.e. d s

^
n = 0. The initial

approximation s0 can be freely chosen if it satisfies the initial and boundary conditions of the
problem. However, the success of the method depends on the proper selection of the initial
approximation s0. We approximate the solution as:

s x; tð Þ ¼ lim
n!1 sn x; tð Þ (3)
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4. Solution to uncertain fractionally damped viscoelastic beam
To develop numerical schemes for a fuzzy fractionally damped viscoelastic beam let us
consider a fuzzy linear differential equation which describes the dynamics of the system
with the damping as an arbitrary fractional derivative of order a:

rA
@2~v
@t2

þ c
@a~v
@ta

þ EI
@4~v
@x4

¼ F x; tð Þ (4)

where r ,A, c, E and I represents the mass density, cross-sectional area, damping coefficients
per unit length, Young’s modulus of elasticity and moment of inertia of the beam,
respectively. F(x, t) is the externally applied force and ~v x; tð Þ is the transverse fuzzy
displacement. @a

@ta is the fractional derivative of order a [ [0, 1] of the fuzzy displacement
function ~v x; tð Þ. Initial conditions are considered as fuzzy viz. ~v 0ð Þ ¼ ~v0 0ð Þ ¼ 0; 0:1; 0:1ð Þ.

In the solution procedure, first, the above equation is converted to an interval based fuzzy
fractional differential equation using single parametric form. Then by using double
parametric form, interval based fuzzy fractional differential equation is reduced to a crisp
differential equation. Next, VIM is applied to solve the corresponding differential equation.

Equation (4) may be written as:

@2~v
@t2

þ c
rA

@a~v
@ta

þ EI
rA

@4~v
@x4

¼ F x; tð Þ
rA

(5)

As per the single parametric form, we maywrite equation (5) as:

@2v x; t; rð Þ
@t2

;
@2v x; t; rð Þ

@t2


 �
þ c

rA
@av x; t; rð Þ

@ta
;
@av x; t; rð Þ

@ta


 �

þ EI
rA

@4v x; t; rð Þ
@x4

;
@4v x; t; rð Þ

@x4


 �
¼ F x; tð Þ

rA
(6)

subject to fuzzy initial condition:

v x; 0; rð Þ; v x; 0; rð Þ� � ¼ v0 x; 0; rð Þ; v 0 x; 0; rð Þ� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

ph i
where; r 2 0; 1½ �:

Next, using the double parametric form (as discussed in Definition 2.5) equation (6) can be
expressed as:

b
@2v x; t; rð Þ

@t2
� @2v x; t; rð Þ

@t2

� 

þ @2v x; t; rð Þ

@t2

	 �

þ c
rA

b
@av x; t; rð Þ

@ta
� @av x; t; rð Þ

@ta

� 

þ @av x; t; rð Þ

@ta

	 �

þ EI
rA

b
@4v x; t; rð Þ

@x4
� @4v x; t; rð Þ

@x4

� 

þ @4v x; t; rð Þ

@x4

	 �
¼ F x; tð Þ

rA
(7)
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subject to fuzzy initial conditions.

b v x; 0; rð Þ � v x; 0; rð Þ� �þ v x; 0; rð Þ� � ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
and

b v 0 x; 0; rð Þ � v0 x; 0; rð Þ� �þ v0 x; 0; rð Þ� � ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

where; b 2 0; 1½ �

Let us now denote:

b
@2v x; t; rð Þ

@t2
� @2v x; t; rð Þ

@t2

� 

þ @2v x; t; rð Þ

@t2

	 �
¼ @2~v x; t; r; bð Þ

@t2
;

b
@av x; t; rð Þ

@ta
� @av x; t; rð Þ

@ta

� 

þ @av x; t; rð Þ

@ta

	 �
¼ @a~v x; t; r; bð Þ

@ta
;

b
@4v x; t; rð Þ

@x4
� @4v x; t; rð Þ

@x4

� 

þ @4v x; t; rð Þ

@x4

	 �
¼ @4~v x; t; r; bð Þ

@x4
;

b v x; 0; rð Þ � v 0; rð Þ� �þ v x; 0; rð Þ� � ¼ ~v x; 0; r; bð Þ and
b v 0 x; 0; rð Þ � v0 x; 0; rð Þ� �þ v0 x; 0; rð Þ� � ¼ ~v 0 x; 0; r; bð Þ

Substituting these values in equation (7) we get:

@2~v x; t; r; bð Þ
@t2

þ c
rA

@a~v x; t; r; bð Þ
@ta

þ EI
rA

@4~v x; t; r; bð Þ
@x4

¼ F x; tð Þ
rA

(8)

with initial conditions~v x; 0; r; bð Þ ¼ ~v0 x; 0; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
.

By solving the corresponding equation (8) one may get the uncertain transverse fuzzy
displacement~v x; t; r; bð Þ. To obtain the lower and upper bounds of the solution in single
parametric form one may substitute b = 0 and 1 respectively and thus the solution bounds
may be represented as:

~v x; t; r; 0ð Þ ¼ v x; t; rð Þ and~v x; t; r; 1ð Þ ¼ v x; t; rð Þ (9)

4.1. Application of VIM in to double parametric based form
First, we have applied VIM to solve equation (8). According to VIM, we may construct a
correction functional as follows:

~vnþ1 x; t;r;bð Þ ¼ ~vn x; t;r;bð Þ

þ
ðt
0

l tð Þ @2

@t 2
~vn x;t ;r;bð Þþ c

rA
@l

@tl
~̂vn x;t ;r;bð Þþ EI

rA
@4

@x4
~̂vn x;t ;r;bð Þ�F x; tð Þ

rA

( )
dt

(10)
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Making the above correction functional, i.e. equation (10) stationary, and noticing that
d ~̂vn ¼ 0, we obtain:

d~vnþ1 x; t;r;bð Þ ¼ d~vn x; t;r;bð Þ

þd

ðt
0

l tð Þ @2

@t 2
~vn x;t ;r;bð Þþ c

rA
@a

@ta
~̂vn x;t ;r;bð Þþ EI

rA
@4

@x4
~vn x;t ;r;bð Þ�F x; tð Þ

rA

( )
dt

¼ 1�l 0 tð Þ� �
d~vn x; t;r;bð Þþl tð Þd~v 0

n x; t;r;bð Þþ
ðt
0

l 00 tð Þd~vn x;t ;r;bð Þdt ¼ 0

(11)

Thus, we obtain the Euler–Lagrange equation:

l 00 tð Þ ¼ 0 (12)

with natural boundary:

1� l 0 tð Þ ¼ 0;

l tð Þ ¼ 0
(13)

So, the Lagrange multiplier can be easily identified as follows:

l ¼ t � t (14)

Substituting the identified Lagrange multiplier into equation (10), following variational
iteration formula can be obtained as:

~vnþ1 x; t;r;bð Þ ¼ ~vn x; t;r;bð Þ

þ
ðt
0

t � tð Þ @2

dt 2
~vn x;t ;r;bð Þþ c

rA
@a

dta
~̂vn x;t ;r;bð Þþ EI

rA
@4

dx4
~vn x;t ;r;bð Þ�F x; tð Þ

rA

( )
dt

(15)

5. Uncertain response analysis
Let us consider the external applied force F(x, t) as:

F x; tð Þ ¼ f xð Þg tð Þ (16)

where f(x) is a specified space dependent deterministic function and g(t) is time dependent
process. In the following paragraph, we will examine the fuzzy response of the dynamic
system (8) subject to unit step and impulse loading conditions.
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5.1. Unit step function response
We will now consider the response of the fuzzy fractionally damped beam subject to a unit
step load of the form g(t) = Bu(t) where u(t) is the Heaviside function andB is a constant.

We start with an initial approximation:

~v0 ¼ ~v x; 0; r; bð Þ ¼ 1þ tð Þ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
(17)

and from variational iterational equation (15) with the application of Caputo derivative as
defined in Chakraverty and Behera (2013), Behera and Chakraverty (2013c) for fractional
differentiation, we have:

~v1 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ t � c

rA
t3�a

C 4� að Þ

 !
þ fBt2

2rA

(18)

~v2 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

� 1þ t � c
rA

t3�a

C 4� að Þ þ
c2

r 2A2

t5�2a

C 6� 2að Þ

 !

� fBc
r 2A2

t4�a

C 5� að Þ �
EIBf 4

r 2A2

t4

C 5ð Þ þ
fBt2

2rA
(19)

~v3 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

� 1þ t � c
rA

t3�a

C 4� að Þ þ
c2

r 2A2

t5�2a

C 6� 2að Þ �
c3

r 3A3

t7�3a

C 8� 3að Þ

 !

þ fBc2

r 3A3

t6�2a

C 7� 2að Þ �
fBc
r 2A2

t4�a

C 5� að Þ �
EIBf 4

r 2A2

t4

C 5ð Þ

þ 2EIBcf 4

r 3A3

t6�a

C 7� að Þ þ
E2I2Bf 8

r 3A3

t6

C 7ð Þ þ
fBt2

2rA
(20)

~v4 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

�
1þ t � c

rA
t3�a

C 4� að Þ þ
c2

r 2A2

t5�2a

C 6� 2að Þ
� c3

r 3A3

t7�3a

C 8� 3að Þ �
c4

r 4A4

t9�4a

C 10� 4að Þ

0
BBB@

1
CCCA� fBc3

r 4A4

t8�3a

C 9� 3að Þ

EC
35,2

826

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
le

ct
ro

ni
c 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

of
 C

hi
na

 A
t 0

2:
03

 1
5 

M
ay

 2
01

8 
(P

T
)



þ fBc2

r 3A3

t6�2a

C 7� 2að Þ �
fBc
r 2A2

t4�a

C 5� að Þ �
EIBf 4

r 2A2

t4

C 5ð Þ

þ 2EIBcf 4

r 3A3

t6�a

C 7� að Þ �
3EIBc2f 4

r 4A4

t8�2a

C 9� 2að Þ þ
E2I 2Bf 8

r 3A3

t6

C 7ð Þ

� 3E3I 3Bf 12

r 4A4

t8

C 9ð Þ �
3E2I 2Bcf 8

r 4A4

t8�a

C 9� að Þ þ
fBt2

2rA
(21)

and so on, where f ið Þ ¼ @i f
@xi.

Explaining in details to get the above expressions, first for equation (18), we have to
substitute the value of the initial approximation ~v0 x; t; r; bð Þ as defined in equation (17) into
equation (15).

Accordingly, one may have:

~v1 x; t; r; bð Þ ¼ 1þ tð Þ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
þ
ðt
0

t � tð Þ wf gdt

where:

w ¼ @2

dt 2
1þ tð Þ b 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn oh i

þ c
rA

@a

dta
1þ tð Þ b 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn oh i

þ EI
rA

@4

dx4
1þ tð Þ b 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn oh i
� fBu tð Þ

rA

Simplifying the above expression for ~v1 x; t; r; bð Þ using the definition for fractional
derivative in Caputo sense as defined in Chakraverty and Behera (2013), Behera and
Chakraverty (2013c) for the second term and by considering general differentiation for first
and third term involved in expression of w we have:

~v1 x; t; r; bð Þ ¼ 1þ tð Þ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

þ
ðt
0

t � tð Þ c
rA

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
C 2ð Þt 1�a

C 2� að Þ � fBu tð Þ
rA

0
@

1
A
dt

By general differentiation, the first and third term involved in expression of w vanishes.
(For better understanding for the Caputo’s derivative from definition (Podlubny, 1999),

we have:
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DaC ¼ 0; ðC is a constantÞ

Datg ¼
0; g #a� 1

C g þ 1ð Þtg�a

C g � a þ 1ð Þ ; g > a � 1

8><
>:

hereDa is the fractional derivative of order a.)
Next, again the above expression for ~v1 x; t; r; bð Þ has been simplified as below

substitutingC(2) = 1 and accordingly one may have:

~v1 x; t; r; bð Þ ¼ 1þ tð Þ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

þ
ðt
0

t
c
rA

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
t 1�a

C 2� að Þ � fBu tð Þ
rA

0
@

1
A
dt

�
ðt
0

t
c
rA

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
t 1�a

C 2� að Þ � fBu tð Þ
rA

0
@

1
A
dt

After applying the simple integration rule for the integrating term involved in the above
equation, it gives:

~v1 x; t; r; bð Þ ¼ 1þ tð Þ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

þ c
rA

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
t3�a

3� að ÞC 2� að Þ � fBt2

2rA

� c
rA

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
t3�a

2� að ÞC 2� að Þ þ fBt2

rA

Hence, equivalently the above expression can be represented as:

~v1 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ t � c

rA
t3�a

C 4� að Þ

 !
þ fBt2

2rA

This represents equation (18). Similarly, equations (19) to (21) and rest of the components
can be obtained. Therefore, the solution can be written in general form as:

~v x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ B
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2 pþ1ð ÞX1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 3
� � : (22)
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As discussed above, to obtain the solution bound in single parametric form we may put b =
0 and 1 to get the lower and upper bound of the solution, respectively. This may be
represented as ~v x; t; r; 0ð Þ ¼ v x; t; rð Þ and ~v x; t; r; 1ð Þ ¼ v x; t; rð Þ.

Hence,

v x; t; r; 0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ B
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2 pþ1ð ÞX1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 3
� �

(23)

v x; t; r; 1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ B
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2 pþ1ð ÞX1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 3
� � :

(24)

5.2. Unit impulse function response
Next, we consider response of the beam subject to a unit impulse load of the form g(t) = d (t)
where d (t) is the unit impulse function. Using VIM in this case again, we have:

~v0 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ tð Þ (25)

~v1 x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ t � c

rA
t3�a

C 4� að Þ

 !
þ fBt

rA

(26)

~v2ðx; t; r; b Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

� 1þ t � c
rA

t3�a

Cð4� aÞ þ
c2

r 2A2

t5�2a

Cð6� 2aÞ

 !

� fBc
r 2A2

t3�a

Cð4� aÞ �
EIBf 4

r 2A2

t3

Cð4Þ þ
fBt
rA

(27)
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~v3ðx; t; r; b Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o

� 1þ t � c
rA

t3�a

Cð4� aÞ þ
c2

r 2A2

t5�2a

Cð6� 2aÞ �
c3

r 3A3

t7�3a

Cð8� 3aÞ

 !

þ fBc2

r 3A3

t5�2a

Cð6� 2aÞ �
fBc
r 2A2

t3�a

Cð4� aÞ þ
2EIBcf 4

r 3A3

t5�a

Cð6� aÞ

þE2I2Bf 8

r 3A3

t5

Cð6Þ �
EIBf 4

r 2A2

t3

Cð4Þ þ
fBt
rA

(28)

and so on, where f ið Þ ¼ @ i f
@xi. In the similar manner, the rest of the components can be

obtained. Therefore, the solution can be written in general form as:

~v x; t; r; bð Þ ¼ b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

pn o
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ 1
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2pþ1
X1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 2
� �

(29)

To obtain the solution bound in single parametric form we may put b = 0 and 1 to get the
lower and upper bound of the solution, respectively. This may again be represented as
~v x; t; r; 0ð Þ ¼ v x; t; rð Þ and ~v x; t; r; 1ð Þ ¼ v x; t; rð Þ. Hence:

v x; t; r; 0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ 1
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2pþ1
X1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 2
� �

(30)

v x; t; r; 1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:02log r

p� �
1þ

X1
k¼0

t 2�að Þkþ1

C 2� að Þkþ 2ð Þ

( )

þ 1
rA

X1
p¼0

�1ð Þp
p!

EI
rA

� 
p

f 4pð Þt2pþ1
X1
j¼0

�c
rA

� 
j jþ pð Þ!t 2�að Þj

j!C 2� að Þjþ 2pþ 2
� �

(31)

6. Numerical results and discussions
In this section, fuzzy responses subject to unit step and impulse function has been
considered. Equations (23) and (30) provide the desired expressions for the considered
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loading condition. We have assumed a simply supported beam; hence, one may have
f xð Þ ¼ sin px

L

� �
. Here, the numerical computations have been done by truncating the infinite

series in equations (23), (24), (30) and (31) to a finite number of terms. For numerical
simulations, let us denote c/m and EI/rA, respectively, as 2hvn

3/2 and vn
2 where, vn is the

natural frequency and h is the damping ratio. The values of the parameters are taken as B=
1, rA= 1, L=p , x= 1/2 andm= 1.

6.1 Case studies for fuzzy unit step response
Depending upon the natural frequency vn, damping ratio h and arbitrary order fractional
derivative a subjected to unit step load, two different cases have been considered as follows. In
the first case, the numerical values of the parameters are taken asvn= 5rad/s, h = 0.5 anda =
0.2. Next, in the second case,vn= 10rad/s, h = 0.05 and a = 0.5 have been considered. For first
and second cases obtained fuzzy responses with respect to time are depicted in Figures 1 and 2,
respectively. Next, Figures 3 and 4 give the effects of interval unit step responses for the
particular value of membership r. Here, for r = 1, the lower and upper bound of the solution
coincides each other and denoted as v t; 1ð Þ ¼ v t; 1ð Þ ¼ v t; 1ð Þ. Figure 3 represents the
interval solution for r = 0.4 and 0.8 with r = 1 for the first case. Similarly, Figure 4 cites the
results for the second case with r = 1.

Next, for the result analysis, we have considered the same parametric values as
considered for Figure 3 by varying the fractional order derivative for damping factor. As
regard, Figures 5 and 6 represent the interval unit step responses for a = 0.5 and 0.8,
respectively.

From the results, it can be seen that the uncertain width of the solution gradually
decreases by increasing the membership value r. One may also observe from Figures 3, 5
and 6 that the oscillation of the uncertain bounds of the unit step responses gradually
decreases by increasing the order of the fractional derivative.

To show the rapid convergence by this method. we have also incorporated various
numerical simulation results by changing the truncation order (number of
approximations) in Tables I to IV for unit step load. The data used in these tables are
self-explanatory.

Figure 1.
Fuzzy unit step

response forvn = 5
rad/s, h = 0.5 and

a = 0.2
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https://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-04-2017-0134&iName=master.img-000.jpg&w=238&h=158


Figure 2.
Fuzzy unit step
response forvn= 10
rad/s, h = 0.05 and a
= 0.5

Figure 3.
Interval unit step
response for (a) r =
0.4, (b) r = 0.8 with
vn= 5 rad/s, h = 0.5
a = 0.2 and r = 1
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6.2 Case studies for fuzzy unit impulse response
Similarly, for the above case, here depending upon the system parameters, namely,
natural frequency vn, damping ratio h and arbitrary order fractional derivative a,
four different cases have been considered as follows subjected to unit impulse load. In
the first case, the numerical values of the parameters are taken as vn = 5rad/s, h =
0.5 and a = 0.2. For the second case vn = 10rad/s, h = 0.5 and a = 0.5 have been
considered. Next, for the third case vn = 5rad/s, h = 0.05 and a = 0.8 are assumed;
and finally, for the fourth case vn = 10rad/s, h = 0.05 and a = 0.2 are used.
Accordingly, for all the cases from first to four, obtained fuzzy unit impulse responses
are shown in Figures 7 to 10. By changing the parametric values as discussed for
fuzzy step responses, one may observe that results obtained for this case show same
behaviour as fuzzy step response.

In the case of unit impulse load, various numerical simulation results by changing the
truncation order are also incorporated in Tables V and VI to show the convergence.

One may note the rapid convergence for different truncation order from Tables I to VI.
Moreover, these tables clearly demonstrate that only a few numbers of approximations are
sufficient for getting the convergence.

Figure 4.
Interval unit step

response for (a) r =
0.4, (b) r = 0.8 with
vn= 10 rad/s, h =

0.05, a = 0.5 and r = 1
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Figure 5.
Interval unit step
response for (a) r =
0.4, (b) r = 0.8 with
vn= 5 rad/s, h = 0.5
a = 0.5 and r = 1

Figure 6.
Interval unit step
response for (a) r =
0.4, (b) r = 0.8 with
vn= 5 rad/s, h = 0.5,
a = 0.8 and r = 1
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It is a gigantic task to include here all the results with respect to various parameters
involved. For both the cases, for r = 1, fuzzy initial conditions convert into crisp initial
conditions. It is interesting to note that for both the responses, lower and upper bounds of
the fuzzy solutions are same for r = 1 And those are found to be same as Behera and
Chakraverty (2013c) and Liang and Tang (2007).

Here, the initial condition has been taken as fuzzy with an idea that the condition may
actually be uncertain, i.e. it may be because of error in observation or experiment, etc. where
we have modelled the uncertainty in terms of Gaussian membership function. As such this
will force the governing differential equation as a whole as uncertain. So, naturally the

Table I.
Bounds of unit step

response (for
different number of
approximations) for
vn = 5, h = 0.05, x =
1/2, a = 0.5, r = 0.1

and t = 0.6

No. of approximations v x; t;að Þ v x; t;að Þ
1 �0.2570579673 0.4296511612
2 �0.3037515074 0.3426942844
3 �0.2871350062 0.3622078397
4 �0.2899776321 0.3592397177
5 �0.2896880346 0.35953304
6 �0.2897079411 0.3595130517
7 �0.289706952 0.3595140422
8 �0.2897069892 0.359514005
9 �0.2897069881 0.3595140061
10 �0.2897069882 0.3595140061
11 �0.2897069882 0.3595140061
12 �0.2897069882 0.3595140061
13 �0.2897069882 0.3595140061
14 �0.2897069882 0.3595140061
15 �0.2897069882 0.3595140061
50 �0.2897069882 0.3595140061

Table II.
Bounds of unit step

response (for
different number of
approximations) for
vn = 5, h = 0.05, x =
1/2, a = 0.5, r = 1 and

t = 0.6

No. of approximations v x; t;að Þ v x; t;að Þ
Behera and Chakraverty (2013c) and

Liang and Tang (2007)

1 0.08629659695 0.08629659695 0.08629659695
2 0.01947138847 0.01947138847 0.01947138847
3 0.03753641673 0.03753641673 0.03753641673
4 0.03463104279 0.03463104279 0.03463104279
5 0.03492250269 0.03492250269 0.03492250269
6 0.03490255529 0.03490255529 0.03490255529
7 0.03490354511 0.03490354511 0.03490354511
8 0.03490350788 0.03490350788 0.03490350788
9 0.03490350898 0.03490350898 0.03490350898
10 0.03490350895 0.03490350895 0.03490350895
11 0.03490350895 0.03490350895 0.03490350895
12 0.03490350895 0.03490350895 0.03490350895
13 0.03490350895 0.03490350895 0.03490350895
14 0.03490350895 0.03490350895 0.03490350895
15 0.03490350895 0.03490350895 0.03490350895
50 0.03490350895 0.03490350895 0.03490350895

Imprecisely
defined

arbitrary order

835

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
le

ct
ro

ni
c 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

of
 C

hi
na

 A
t 0

2:
03

 1
5 

M
ay

 2
01

8 
(P

T
)



Table III.
Bounds of unit step
response (for
different number of
approximations) for
vn = 5, h = 0.5, x =
1/2, a = 0.2, r = 0.4
and t = 0.5

No. of approximations v x; t;að Þ v x; t;að Þ
1 �0.1431311166 0.2629875012
2 �0.1399348068 0.1735918129
3 �0.1440325514 0.1921654502
4 �0.1434076684 0.1898833849
5 �0.1434656363 0.1900574066
6 �0.1434620644 0.1900482501
7 �0.1434622225 0.1900486043
8 �0.1434622172 0.1900485937
9 �0.1434622174 0.190048594
10 �0.1434622174 0.190048594
11 �0.1434622174 0.190048594
12 �0.1434622174 0.190048594
13 �0.1434622174 0.190048594
14 �0.1434622174 0.190048594
15 �0.1434622174 0.190048594
50 �0.1434622174 0.190048594

Table IV.
Bounds of unit step
response (for
different number of
approximations) for
vn = 5, h = 0.5, x =
1/2, a = 0.2, r = 1 and
t = 0.5

No. of approximations v x; t;að Þ v x; t;að Þ
Behera and Chakraverty (2013c) and

Liang and Tang (2007)

1 0.05992819233 0.05992810233 0.05992810233
2 0.01682850308 0.01682850308 0.01682850308
3 0.02406644936 0.02406644936 0.02406644936
4 0.02323785826 0.02323785826 0.02323785826
5 0.02329588519 0.02329588519 0.02329588519
6 0.02329309284 0.02329309284 0.02329309284
7 0.02329319086 0.02329319086 0.02329319086
8 0.02329318824 0.02329318824 0.02329318824
9 0.02329318829 0.02329318829 0.02329318829
10 0.02329318829 0.02329318829 0.02329318829
11 0.02329318829 0.02329318829 0.02329318829
12 0.02329318829 0.02329318829 0.02329318829
13 0.02329318829 0.02329318829 0.02329318829
14 0.02329318829 0.02329318829 0.02329318829
15 0.02329318829 0.02329318829 0.02329318829
50 0.02329318829 0.02329318829 0.02329318829

Figure 7.
Fuzzy unit impulse
response forvn= 5
rad/s, h = 0.5 and
a = 0.2
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outcome or the output (result) must be uncertain. This way we may have the actual essence
of the uncertainty in response which may benefit the engineers to understand the safety of
the system in a better way.

7. Conclusions
VIM has successfully been applied to obtain the uncertain dynamic responses of fuzzy
fractionally damped simply supported beam using double parametric form of fuzzy
numbers. In general, we need to transform the fuzzy differential equation to two crisp
differential equations. These differential equations may be coupled or uncoupled

Figure 8.
Fuzzy unit impulse

response forvn= 10
rad/s, h = 0.5 anda

= 0.5

Figure 9.
Fuzzy unit impulse
response forvn= 5
rad/s, h = 0.05 and

a = 0.8
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depending upon the sign of the coefficients. Accordingly, one has to solve the system of
crisp differential equations. But it is interesting to note that the proposed double
parametric based method does not require to solve the system of differential equations
rather it only solves the transformed crisp differential equation. As such, it is very easy
and straight forward to apply. Gaussian convex normalized fuzzy sets are considered
for the present analysis. Uncertain dynamic responses subject to unit step and impulse
loads are chosen to illustrate the proposed procedure. This method is found to be
efficient for computing approximate solution bounds of uncertain differential equation
for fractional order because only few terms are required for the convergence. However,
in the present work, fuzziness or uncertainty are considered only in the involved initial
conditions and accordingly uncertain responses have been computed. Hence, the future

Figure 10.
Fuzzy unit impulse
response forvn= 10
rad/s, h = 0.05 and
a = 0.2

Table V.
Bounds of unit
impulse response (for
different number of
approximations) for
vn = 5, h = 0.5, x =
1/2, l = 0.2, a = 0.4
and t = 0.5

No. of approximations v x; t;að Þ v x; t;að Þ
1 0.03665346039 0.4427720782
2 �0.2183478177 0.09517880195
3 �0.1546862099 0.1815117917
4 �0.1653795432 0.16791151
5 �0.1644116193 0.1691114236
6 �0.1644685594 0.1690417551
7 �0.1644662059 0.1690446209
8 �0.1644662781 0.1690445328
9 �0.1644662764 0.1690445349
10 �0.1644662764 0.1690445349
11 �0.1644662764 0.1690445349
12 �0.1644662764 0.1690445349
13 �0.1644662764 0.1690445349
14 �0.1644662764 0.1690445349
15 �0.1644662764 0.1690445349
50 �0.1644662764 0.1690445349
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aim is to include fuzziness for all the associated parameters such as in material and
geometric properties. And accordingly, the aim is to develop suitable numerical method
to obtain the solution.
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