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Abstract Uncertainties exist in products or systems widely.
In general, uncertainties are classified as epistemic uncer-
tainty or aleatory uncertainty. This paper proposes a unified
uncertainty analysis (UUA) method based on the mean
value first order saddlepoint approximation (MVFOSPA),
denoted as MVFOSPA-UUA, to estimate the systems prob-
abilities of failure considering both epistemic and aleatory
uncertainties simultaneously. In this method, the input
parameters with epistemic uncertainty are modeled using
interval variables while input parameters with aleatory
uncertainty are modeled using probability distribution or
random variables. In order to calculate the lower and upper
bounds of system probabilities of failure, both the best
case and the worst case scenarios of the system perfor-
mance function need to be considered, and the proposed
MVFOSPA-UUA method can handle these two cases eas-
ily. The proposed method is demonstrated to be more
efficient, robust and in some situations more accurate than
the existing methods such as uncertainty analysis based on
the first order reliability method. The proposed method is
demonstrated using several examples.

Keywords Reliability · Uncertainty analysis ·
Saddlepoint approximation · Mean value ·
Epistemic uncertainty · Aleatory uncertainty

N.-C. Xiao · H.-Z. Huang (B) · Z. Wang · Y. Liu · X.-L. Zhang
School of Mechatronics Engineering, University of Electronic
Science and Technology of China, No. 2006, Xiyuan Avenue,
West Hi-Tech Zone, Chengdu, Sichuan, 611731, China
e-mail: hzhuang@uestc.edu.cn

Abbreviations

UUA Unified Uncertainty Analysis,
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CDF Cumulative Distribution Functions,
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CGF Cumulant Generating Function

1 Introduction

Uncertainties widely exist in practical engineering systems.
Uncertainties may be generated due to incomplete infor-
mation, less sampling data, ignorance, measure errors,
and inherent variations for environment. These uncertain-
ties can be classified as epistemic or aleatory uncertainty
(Kiureghian 2008; Du 2008a; Kiureqhian and Ditlevsen
2009; Zhang and Huang 2010). Epistemic uncertainty
comes from ignorance or incomplete information which
is usually modeled using interval variables or fuzzy vari-
ables (Du 2008a). Aleatory uncertainty arises from inherent
variation which is often modeled with probability distribu-
tions. The classical reliability estimation methods, such as
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the first order reliability method (FORM) (Melchers
1999; Chiralaksanakul and Mahadevan 2005; Jensen 2007;
Koduru and Haukaas 2010; Xiao et al. 2011) and the second
order reliability method (SORM) (Hohenbichler et al. 1987;
Zhao and Ono 1999; Lee and Kim 2006), are commonly
used for the system reliability analysis and reliability-based
design due to their good balance between accuracy and
efficiency. Generally, SORM is more accurate than the
FORM. However, the efficiency of the SORM is generally
low because of calculating Hessian matrix (Melchers 1999).
In spite of their usefulness, both the FORM and SORM are
often not accurate enough in many cases, because when
random variables are non-normally distributed and/or cor-
related, these non-normally distributed and/or correlated
random variables need to be transformed into equivalent
independent normal variables. Furthermore, most probable
point (MPP) search is necessary for the above two meth-
ods. Sometimes the MPP search process does not converge
(Huang and Du 2008). For these reasons, a new reliabil-
ity analysis method which is more accurate and efficient is
necessary.

Recently, the first order saddlepoint approximation
(FOSPA) technique was first introduced by Du and
Sudjianto (2004) for the system reliability analysis and
reliability-based design optimization. The main principle
of the FOSPA is to evaluate both the probability density
function (PDF) and cumulative distribution function (CDF)
of the system performance function by using saddlepoint
approximation. In the FOSPA, system performance func-
tion is expanded as the first order Taylor series at the most
likelihood point (MLP) (Du and Sudjianto 2004) which has
the highest probability density on the system performance
function. From the discussion and examples in Du and
Sudjianto (2004), it proved that FOSPA is more accurate
than the FORM. For some special cases, FOSPA is more
accurate than the SORM, because when random variables
are non-normally distributed and/or correlated, the SORM
requires a non-normal to normal transformation. The trans-
formation increases the nonlinearity of system performance
function significantly which may lead to an increased cal-
culation error in reliability estimation. However, FOSPA
has some drawbacks such as determining of MLP (Du
and Sudjianto 2004), which is an optimization process that
involves time-consuming search. In some cases, there might
exist even more than one MLP or none of them. To avoid
such searching of MLP, Huang and Du (2008) proposed a
method called mean value first order saddlepoint approx-
imation (MVFOSPA), which chooses the expansion point
at the mean values of random variables. They proved that
MVFOSPA is more robust and efficient than the FOSPA
because the former does not require searching the MLP.
However, MVFOSPA (Huang and Du 2008) is only suit-
able for addressing aleatory uncertainty, which is described

by precise probability distribution. It is not applicable to
epistemic uncertainty.

Most of methods described above can not estimate the
probability of failure when both epistemic and aleatory
uncertainties are present in the system simultaneously. To
address this problem, a unified uncertainty analysis (UUA)
based on the FORM has been proposed recently by Du et al.
(2005) and Du (2008a). However, the FORM-based method
has its deficiencies. The main task for FORM-based method
is MPP search. The MPP search is a time-consuming itera-
tive optimization process (Du et al. 2005). Jiang et al. (2011)
proposed a UUA method when both random variables and
p-box variables are present in the system simultaneously,
the MPP search is needed in this method. Zaman et al.
(2011) developed a probabilistic approach for uncertainty
representation and propagation in the system analysis. In
this approach, interval variable was represented by using
Johnson family distributions. Sankararaman and Mahade-
van (2011) presented a likelihood-based methodology for
a probabilistic representation of a stochastic quantity for
which only sparse point data and/or interval data may be
available. The main disadvantages of these methods are that
they involve lot of computational overhead. Furthermore,
Adduri and Penmetsa (2009) presented a UUA method for
structural system reliability analysis under both random and
interval variables. However, the computational efficiency
of this method is very low as it involves the MPP search,
transformation of membership functions, and convolution
integral using the fast Fourier transforms (FFT).

To overcome the limitations of the above existing meth-
ods, an efficient UUA method based on MVFOSPA, denoted
as MVFOSPA-UUA, is proposed to estimate the systems
probabilities of failure considering both epistemic and aleatory
uncertainties simultaneously. This work is an extension to
the research works by Huang and Du on the MVFOSPA and
FOSPA (Du and Sudjianto 2004; Huang and Du 2008). In
this method, input parameters with epistemic uncertainty are
modeled using interval variables while those with aleatory
uncertainty are modeled using probability distributions.

This paper is organized as follows. Section 2 provides a
brief background about the interval arithmetic and its opera-
tions. Section 3 proposes a UUA method under the mixture
of random and interval variables in details. Three numeri-
cal examples are presented in Section 4 to demonstrate the
proposed method. Section 5 presents brief discussions and
conclusions.

2 Interval arithmetic and its operations

A closed bounded interval
[
X, X̄

] = (
X ≤ X ≤ X , X ∈ R

)

is called an interval number, denoted as X I . X and X are
the lower and upper bounds on interval X I , respectively.
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The midpoint X̃ and radius Xr , can be calculated as follows
(Chen et al. 2004)

X̃ = X + X

2
, Xr = X − X

2
(1)

According to (1), interval X I and interval variable X can be
written in the following standardized forms

X I = X̃ + Xrδ I , X = X̃ + Xrδ (2)

where δ I = [−1, 1] is the unit interval, and δ ∈ δ I is the
unit interval variable. Generally, a real number y can also
be expressed as an interval [y, y]. For interval numbers X I

and Y I , the six basic algebraic operations are listed below
(Ferson et al. 2007; Sun and Yao 2008; Kulisch 2009)

X I + Y I = [
X + Y , X + Y

]
(3)

X I − Y I = [
X − Y , X − Y

]
(4)

X I · Y I = [
min

(
X Y , XY , XY , XY

)
,

max
(
X Y , XY , XY , XY

)]
(5)

X I /Y I =
[(

X , X
) · (1/Y , 1/Y

) (
0 /∈ Y I

)]
(6)

min
(

X I , Y I
)

= [
min

(
X , Y

)
, min

(
X , Y

)]
(7)

max
(

X I , Y I
)

= [
max

(
X , Y

)
, max

(
X , Y

)]
(8)

Any function defined on real values can be extended to
intervals in a straightforward way. The extension to inter-
vals of a function f defined on the real number, for intervals
XI = (

X I
1 , X I

2 , · · · , X I
n

)
, is (Ferson et al. 2007)

f
(

XI
)

=
[

f (X1, X2, · · · , Xn) , X1 ∈ X I
1 ,

X2 ∈ X I
2 , · · · , Xn ∈ X I

n

]
(9)

3 Unified uncertainty analysis under the mixture
of random and interval variables

Huang and Du proposed the methods of the MVFOSPA
and FOSPA for system reliability analysis recently. In
Huang and Du (2008), they showed that the MVFOSPA
is useful due to its high efficiency and accuracy. However,
MVFOSPA is only suitable for the system which only has

random variables. It can not analyze system with both inter-
val and random variables. In this section, we propose a
unified uncertainty analysis method based on MVFOSPA
(referred to as MVFOSPA-UUA). The MVFOSPA-UUA
can analyze systems with both random and interval vari-
ables. Thus the proposed method can be used to solve
the problem when both epistemic uncertainty and aleatory
uncertainty exist in system simultaneously.

3.1 Approximate performance function by the first order
Taylor series under mixed variables

From the practical viewpoint, when interval variables exist
in a system, we may not need the exact ranges of the
function f (XI). In order to determine the approximate
ranges of the function f (XI), a feasible method is expand-
ing the function f (XI ) with Taylor series at the midpoints

X̃ =
(

X̃1, X̃2, · · · , X̃n

)
and keep only linear terms in the

expansion. The expansion process can be expressed as

f
(

XI
)

≈ fL

(
XI
)

= f
(
x̃
)+

n∑

i=1

∂ f

∂ Xi

∣∣
∣
∣
X̃

(
X I

i − x̃i

)

= f
(
x̃
)+

n∑

i=1

∂ f

∂ Xi

∣
∣∣
∣
X̃

Xr
i δ

I

= f
(
x̃
)+

(
n∑

i=1

∣
∣∣
∣

∂ f

∂ Xi

∣
∣∣
∣
X̃

Xr
i

∣
∣∣
∣

)

δ I

(10)

From (10), the approximate ranges of the function f (XI)

can be expressed as

f
(

XI
)

∈
{
[

f
(
x̃
)
, f

(
x̃
)]

+
[

−
(

n∑

i=1

∣∣
∣
∣

∂ f

∂ Xi

∣∣
∣
∣
X̃

Xr
i

∣∣
∣
∣

)

,

(
n∑

i=1

∣∣
∣
∣

∂ f

∂ Xi

∣∣
∣
∣
X̃

Xr
i

∣∣
∣
∣

)]}

=
[

f
(
x̃
)−

(
n∑

i=1

∣∣
∣
∣

∂ f

∂ Xi

∣∣
∣
∣
X̃

Xr
i

∣∣
∣
∣

)

,

f
(
x̃
)+

(
n∑

i=1

∣
∣
∣∣

∂ f

∂ Xi

∣
∣
∣∣
X̃

Xr
i

∣
∣
∣∣

)]

(11)

Let X (R) be the set of all real random variables in a proba-
bility space (�, A, P), XR = (X1, X2 · · · , Xi ) is a random
vector of X (R). A random interval vector XI R can be
expressed as XI R =(X1, X2 · · · , Xi , X I

i+1, X I
i+2, · · · , X I

n

)
.

The mean values of random vector XR can be expressed as

E
(
XR) = [E (X1) , E (X2) , · · · , E (Xi )] (12)
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For the function f (XI R), we can expand function f (XI R)

with Taylor series at the mean values E(X j )( j = 1, 2, · · · ,
i) for random variables, at the midpoints X̃ j ( j = i +
1, i + 2, · · · , n) for interval variables, and keep only lin-

ear terms in the expansion. Let XI R∗ =
[

E(X1), · · · ,

E(Xi ), X̃i+1, · · · , X̃n

]
, the expansion becomes

f
(

XI R
)

≈ fL

(
XI R

)
= f

(
xI R∗

)

+
i∑

j=1

∂ f

∂ X j

∣∣
∣
∣∣
∣
xI R∗

[
X j −E

(
X j
)]+

n∑

j=i+1

∂ f

∂ X j

∣∣
∣
∣∣
∣
xI R∗

×
(

X I
j − X̃ j

)
(13)

From (13), the range of fL (XI R) can be expressed as

fL

(
XI R

)
∈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
f
(
xI R∗

)
, f

(
xI R∗

)]

+
[

−
(

n∑

j=i+1

∣
∣
∣∣

∂ f
∂ X j

∣∣
∣
xI R∗

Xr
j

∣
∣
∣∣

)

,

(
n∑

j=i+1

∣∣
∣
∣

∂ f
∂ X j

∣
∣∣
xI R∗

Xr
j

∣∣
∣
∣

)]

+
i∑

j=1

∂ f
∂ X j

∣
∣
∣∣
∣
xI R∗

[
X j − E

(
X j
)]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

From (14), we have

fL

(
XI R

)
∈

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

f
(
xI R∗

)−
(

n∑

j=i+1

∣
∣
∣∣

∂ f
∂ X j

∣∣
∣
xI R∗

Xr
j

∣
∣
∣∣

)

−
i∑

j=1

∂ f
∂ X j

∣
∣∣
∣
∣
xI R∗

E
(
X j
)+

i∑

j=1

∂ f
∂ X j

∣
∣∣
∣
∣
xI R∗

X j ,

f
(
xI R∗

)+
(

n∑

j=i+1

∣
∣∣
∣

∂ f
∂ X j

∣
∣
∣
xI R∗

Xr
j

∣
∣∣
∣

)

−
i∑

j=1

∂ f
∂ X j

∣∣
∣
∣∣
xI R∗

E
(
X j
)+

i∑

j=1

∂ f
∂ X j

∣∣
∣
∣∣
xI R∗

X j

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

(15)

For simplification, the function fL (XI R) in (13) can also be
rewritten as

fL
(
XI R) = a0 + a1 X1 + a2 X2 + · · · + ai Xi

+ ai+1 Xr
i+1δ

I
i+1 + · · · + an Xr

nδ I
n (16)

where a0 = f
(
xI R∗

) −
i∑

j=1

∂ f
∂ X j

∣
∣
∣
xI R∗

E
(
X j
)
, and a j =

∂ f
∂ X j

∣∣
∣
xI R∗

( j = 1, 2, · · · , n).

For discussion convenience, assume ai > 0(i = 1,

2, · · · , n). From (15) and (16), the global minimum value
f min
L and maximum value f max

L of fL over interval variables
become

f min
L

(
XI R

)
= a0 − |ai+1| Xr

i+1 − · · · − |an| Xr
n

+ a1 X1 + a2 X2 + · · · + ai Xi (17)

and

f max
L

(
XI R

)
= a0 + |ai+1| Xr

i+1 + · · · + |an| Xr
n

+ a1 X1 + a2 X2 + · · · + ai Xi , (18)

respectively.

3.2 First order saddlepoint approximation

Daniels (1954) introduced the saddlepoint approximation
(SPA) technique for the approximate distribution of random
variables. SPA can provide an accurate estimation of cumu-
lative distribution function (CDF) in a tail area (Wood et al.
1993; Huang and Du 2006; Gillespie and Renshaw 2007;
Du 2008b). The FOSPA technique was first introduced by
Du and Sudjianto (2004) in the domains of system reliability
analysis and reliability-based design optimization recently.
Brief introductions about both the SPA and MVFOSPA are
given below.

Assume a performance function is denoted by f (X).
In the MVFOSPA (Huang and Du 2008), f (X) is lin-
earized in the original random space. The expansion point
is at the mean values of random variables rather than the
MLP (Huang and Du 2008). The linearized function can be
expressed as

f (X) ≈ fL (X) = f
(
x∗)+

n∑

i=1

∂ f

∂ Xi

∣∣
∣∣
∣
X∗

[Xi − E (Xi )]

(19)

where X∗ and E(Xi ) are X∗ =[E(X1), E(X2), · · · ,E(Xn)],
and the mean value of the i th random variable, respectively.

Let the cumulant generating function (CGF) of Xi is
denoted as K (Xi , t). There are two useful properties of CGF
described as follows (Huang and Du 2008):

Property 1 If X = (X1, X2, · · · , Xn) are independent
random variables and their corresponding CGFs are
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K (Xi , t) (i = 1, 2, · · · , n), then the CGF of Y =
n∑

i=1
Xi

is given by

K (Y, t) =
n∑

i=1

K (Xi , t) (20)

Property 2 If X is a random variable and its CGF is K (X ,
t), then the CGF of Y = aX + b (a and b are constants) is
given by

K (Y, t) = K (X, at) + bt (21)

For example, if X follows exponential distribution with
CGF K (X, t) = − ln (1 − t /α), then the CGF of Y is
K (Y, t) = K (X, at) + bt = − ln (1 − at /α) + bt .

According to the two properties in (20) and (21), the CGF
of fL (X) is given by

K f (X, t) =
[

f
(
x∗)−

n∑

i=1

∂ f

∂ Xi

∣
∣∣
∣
∣
x∗

E (Xi )

]

t

+
n∑

i=1

K

(
Xi ,

∂ f

∂ Xi

∣
∣
∣∣
x∗

t

)
(22)

The saddlepoint t∗ (Du 2008b) can be determined by solv-
ing the following equation

d
[
K f (X, t)

]

dt
− y = 0 (23)

After acquiring the saddlepoint t∗, according to Lugannani
and Rice (1980) or Barndorff-Nielsen (1986), the probabil-
ity of failure, Pf , can be approximated by

Pf = P
[

fL (X) ≤ y
] = �(w) + φ (w)

(
1

w
− 1

v

)
(24)

or

Pf = P
[

fL (X) ≤ y
] = �

[
w + 1

w
log

v

w

]
(25)

where w = sign (t)
{
2
[
t y − K f (X, t)

]} 1
2

∣
∣∣
∣
t∗

, v =

t
[

d2[K f (X,t)]
dt2

] 1
2

∣
∣
∣∣
∣
t∗

, �() and φ() are the CDF and PDF

of standard normal distribution, respectively. The function
sign() is a sign function and its definition is sign (t) =⎧
⎨

⎩

1, if t > 0
0, if t = 0

−1, if t < 0
. The CGF of some general distributions

are given in Table 1 (Du and Sudjianto 2004; Huang and Du
2008).

3.3 Unified uncertainty analysis based on MVFOSPA

When both interval variables and random variables are
present in the system, the system performance function can
be denoted as f (XI R), XI R = (X1, X2 · · · , Xi , X I

i+1, X I
i+2,

· · · , X I
n). As discussed in Section 3.1, we can expand

the function f
(
XI R

)
by Taylor series at the mean values

E
(
X j
)
( j = 1, 2, · · · , i) for random variables and the mid-

points X̃ j ( j = i + 1, i + 2, · · · , n) for interval variables.
Only linear terms are kept in the expansion. The global
minimum value f min

L and maximum value f max
L of fL over

interval variables can be expressed in (17) and (18).
According to (16)–(18) and (20)–(22), the corresponding

CGFs of fL , f min
L and f max

L can be expressed as

K fL

(
XI R, t

)
=
(

a0 + ai+1 Xr
i+1δ

I
i+1 + · · · + an Xr

nδ I
n

)
t

+
i∑

j=1

K
(
X j , a j t

)
(26)

and

K f min
L

(
XI R, t

)
= (

a0 − |ai+1| Xr
i+1 − · · · − |an| Xr

n

)
t

+
i∑

j=1

K
(
X j , a j t

)
(27)

Table 1 CGF of some
distributions Distribution PDF CGF

Normal f (x) =
(

1
/√

2πσ
)

exp
[
(x − μ)2/2σ 2

]
K (t) = μt + 1

2 σ 2t2

Uniform f (x) = 1
/
(b − a) K (t) = ln

(
ebt − eat

)− ln (b − a) − ln (t)

Exponential f (x) = α exp (−αx) K (t) = − ln (1 − t /α)

Gumbel
f (x) = (

1
/
σ
)

exp
[
(x − μ)

/
σ
]

exp
{− exp

[
(x − μ)

/
σ
]} K (t) = μt + ln 
 (1 − σ t)

Gamma f (x) = βα
/

 (α)xα−1e−βx K (t) = α [ln β − n (β − t)]

χ2 f (x) = [
1
/

 (n/2) 2n/2

]
xn/2−1e

(
− 1

2 x
)

K (t) = − 1
2 n ln (1 − 2t)
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and

K f max
L

(
XI R, t

)
= (

a0 + |ai+1| Xr
i+1 + · · · + |an| Xr

n

)
t

+
i∑

j=1

K
(
X j , a j t

)
, (28)

respectively.
In order to calculate the lower and upper bounds of prob-

abilities of failure, the saddlepoints t∗worst and t∗best need
to be determined for the system under both the worst case
and the best case. These two saddlepoints are calculated by
solving the following equations

d
[

K f min
L

(
XI R, t

)]

dt
− y = 0 (29)

and

d
[

K f max
L

(
XI R, t

)]

dt
− y = 0, (30)

respectively. The lower and upper bounds of the system
probabilities of failure, Pmin

f and Pmax
f , can thus be calcu-

lated by

Pmin
f = P

[
f max
L

(
XI R

)
≤ y

]

= �
(
w∗

best

)+ φ
(
w∗

best

)
(

1

w∗
best

− 1

v∗
best

)
(31)

or

Pmin
f = P

[
f max
L

(
XI R

)
≤ y

]

= �

[
w∗

best + 1

w∗
best

log

(
v∗

best

w∗
best

)]
(32)

and

Pmax
f = P

[
f min
L

(
XI R

)
≤ y

]

= �
(
w∗

worst

)+ φ
(
w∗

worst

) ( 1

w∗
worst

− 1

v∗
worst

)
(33)

or

Pmax
f = P

[
f min
L

(
XI R

)
≤ y

]

= �

[
w∗

worst + 1

w∗
worst

log

(
v∗
worst

w∗
worst

)]
, (34)

where

w∗
best = sign (t)

{
2
[
t y − K f max

L

(
XI R, t

)]} 1
2

∣
∣∣
∣
t∗best

(35)

Table 2 Details of both random and interval variables

Variable Parameter 1 Parameter 2 Type

X1 4.5 0.0833 Uniform

X2 1.0 1.0 Exponential

X3 2.0 2.5 Interval

and

w∗
worst = sign (t)

{
2
[
t y − K f min

L

(
XI R, t

)]} 1
2

∣∣
∣
∣
t∗worst

(36)

and

v∗
best = t

⎧
⎨

⎩

d2
[

K f max
L

(
XI R, t

)]

dt2

⎫
⎬

⎭

1
2

∣
∣
∣∣
∣
∣∣
∣
t∗best

(37)

and

v∗
worst = t

⎧
⎨

⎩

d2
[

K f min
L

(
XI R, t

)]

dt2

⎫
⎬

⎭

1
2

∣∣
∣
∣∣
∣
∣∣
t∗worst

(38)

Generally, if all the random variables are tractable, that is,
all the random variables have a closed form of CGF, the
bounds of system probability of failure can be obtained
easily. However, in some cases, some random variables
may not have a closed form. There are two ways (Du and
Sudjianto 2004) to handle intractable random variables:

1. Transform the random variable into another random
variable with tractable CGF.

2. Approximate the CGF using polynomial expansions.

To sum up, the MVFOSPA-UUA involves the following
steps to analyze the system probability of failure when both

Table 3 Probability of failure calculated by different methods

Values z Probability MVFOSPA-UUA FORM-based MCS

of failure

0 Pmin
f 0.1084 0.0531 0.1064

Pmax
f 0.3824 0.3951 0.3680

1.5 Pmin
f 0.7673 0.7760 0.7670

Pmax
f 0.8586 0.8641 0.8588

2.5 Pmin
f 0.9141 0.9175 0.9145

Pmax
f 0.9478 0.9499 0.9480
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Fig. 1 Lower and upper bounds CDFs comparison between MCS and
MVFOSPA-UUA

random variables and interval variables are present in the
system simultaneously:

1. Transform the intractable random variables into another
random variable with tractable CGF or approximate the
CGF by using polynomial expansions.

2. Expand the performance function by Taylor series at
the mean values for random variables and the midpoints
for interval variables. Only linear terms are kept in the
expansion, such as (13).

3. Find the global minimum and maximum values of the
linearized function over interval variables using (17)
and (18).

4. Calculate both the worst case saddlepoint t∗worst using
(29) and best case saddlepoint t∗best using (30).

5. Calculate the lower bound of system probability of fail-
ure using (31) or (32), and the upper bound of system
probability of failure using (33) or (34).

4 Illustrate examples and discussions

In this section, three examples are used to demonstrate the
accuracy and effectiveness of the proposed method. The
first example is used to deal with a linear performance func-
tion, while the second example is employed to handle non-
linear performance function with many non-normal random

variables. The third example is analyzed to demonstrate the
error of the proposed method. A comparative study is also
provided among FORM-based method, MVFOSM-UUA
and MCS. The results calculated using MCS are used as
reference for the accuracy comparisons.

4.1 Mathematical problem I

A performance function with random interval variables is
given by

Z = f (X) =
3∑

i=1

Xi − 7

Details of both random and interval variables are given in
Table 2.

In Table 2, parameters 1 and 2 are mean value and stan-
dard deviation for uniform and exponential distributions,
respectively. For the interval variable, parameters 1 and 2
are lower and upper bounds, respectively.

In this example, since both random and interval variables
are present in system, the system probability of failure is an
interval rather a precise value. The lower and upper bounds
of the system probability of failure P [Z ≤ z] calculated
using different methods are given in Table 3.

From Table 3, there is a conclusion that the results
obtained using MVFOSPA-UUA are almost identical to the
results calculated using MCS. In this paper, the error cal-
culated using the FORM-based method is larger than the
MVFOSPA-UUA. The reason is that both uniform distri-
bution and exponential distribution are transformed into
equivalent standard normal variable by Rosenblatt transfor-
mation. This transformation increases the nonlinearity of
the performance function largely, and it makes the original
linear performance function to be a non-linear performance
function. Another main calculation error of the FORM-
based method comes from using a linearized function to
approximate its non-linear performance function. Further-
more, parameter X3 belongs to the interval [2, 2.5], which
does not necessarily mean that X3 is uniformly distributed
with the lower and upper bounds being 2 and 2.5, respec-
tively. If X3 is uniformly distributed, the system probability
of failure calculated using MCS is 0.2278 under z = 0,
rather than an interval.

The lower and upper bounds of FZ = P
[

f (X) ≤ z
]

calculated using MCS and MVFOSPA -UUA are given in

Fig. 2 A beam

d
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wt

fb

L
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Fig. 1. It shows that the CDFs are almost identical to each
other over the entire distribution range.

4.2 A beam example

Consider a beam, shown in Fig. 2, which is used to dem-
onstrate the effectiveness and accuracy of the proposed
method. The performance function is given by (Huang and
Du 2006; Xiao et al. 2011)

Z = f
(
P, L , a, S, d, b f , tw, t f

) = σmax − S

where

σmax = Pa (L − a) d

2L I

and

I = b f d3 − (
b f − tw

) (
d − 2t f

)3

12

The details of both random and interval variables are given
in Table 4. In order to demonstrate the proposed method, we
assume the parameter b f is an interval variable.

In Table 4, parameters 1 and 2 are mean values and
standard deviations for normal and uniform distributions,
respectively. For interval variable, parameters 1 and 2 are
lower and upper bounds, respectively.

In this example, we only consider the case that z < 0,
the bounds of the system probability of failure calculated by
using different methods are given in Table 5.

From Table 5, it shows that the results obtained using
MVFOSPA-UUA is more accurate than the FORM-based
method when compared to the MCS. The proposed method
has the highest efficiency as it requires the least func-
tion evaluations when compared to both the FORM-based
method and MCS. In this example, we are unable to estimate
the system probability of failure by using MCS directly,
because the distribution type of the interval variable is
unknown. However, a feasible method is that we can evenly

Table 4 Details of both random and interval variables

Variable Parameter 1 Parameter 2 Distribution type

P 6070 200 Uniform

L 120 6 Uniform

A 72 6 Uniform

S 170000 4760 Uniform

D 2.3 1/24 Normal

tw 0.16 1/48 Normal

t f 0.26 1/48 Normal

b f 2.2 2.4 Interval

Table 5 Probabilities of failure calculated by different methods

Probability of failure MVFOSPA-UUA FORM-based MCS

Pmin
f 0.8787 0.7044 0.8536

Pmax
f 0.9914 0.8932 0.9847

Function evaluations 9 74 108

divide interval variable into many subintervals, the distribu-
tion type in each subinterval can be approximated by the
uniform distribution. The more numbers of the subinter-
vals we divide, the more accurate the results will be. In
this example, interval variable b f is evenly divided into
1000 subintervals. For each subinterval, MCS-based meth-
ods with 105 samples are used, the total numbers of function
evaluations are 103 · 105 = 108. The numbers of system
probability of failure are 1000, and the bounds of system
probability of failure can be determined from these 1000
results. This example shows that when interval variable
exist in the system, the computational burden using MCS
is extremely huge. In this example, there are many non-
normal random variables in the system. In order to calculate
the bounds of system probability of failure, the non-normal
variables need to be transformed into equivalent standard
normal variables for the FORM-based method by using
Rosenblatt transformation. After several transformations,
the performance function becomes a highly non-linear func-
tion. The bounds of system probability of failure estimated
using the FORM-based method become large.

4.3 Burst margin of disk

The burst margin Mb of a disk is defined as (Huang and Du
2006)

Z = Mb = g ( f, S, δ, N , R, R0)

=
√√√
√

f S

3 · 385.82δ
(

N 2π
60

)2 (
R3 − R3

0

)
(R − R0)

where f is the material utilization factor, S is the ultimate
tensile strength, δ is the density, N is the rotor speed, R is

Table 6 Details of both random and interval variables

Variable Parameter 1 Parameter 2 Distribution type

F 0.9 1.0 Interval

S 220000 lb/in2 5000 lb/in2 Normal

δ 0.28 lb/in3 0.3 lb/in3 Interval

N 21000 rpm 1000 rpm Normal

R 24 in 0.5 in Normal

R0 8 in 0.3 in Normal
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Table 7 Probabilities of failure calculated by different methods

Probability of failure MVFOSPA-UUA FORM-based MCS

Pmin
f 0.5795 0.5724 0.5675

Pmax
f 0.9268 0.9207 0.9181

Function evaluations 7 37 5·1011

the outer radius, and R0 is the inner radius. Details of both
random and interval variables are given in Table 6.

In this example, we only consider the case where z <

2.6 × 10−5. The bounds of system probability of failure
calculated using different methods are given in Table 7.

From Table 7 it shows that the results obtained using the
FORM-based method is more accurate than the MVFOSPA-
UUA when compared to the MCS. The proposed method
inherently contains two kinds of error, namely, error due
to the linearization and error due to the approximation at
the mean value points. In this example, since the FORM-
based method only has the error due to the linearization,
the results calculated by using the FORM-based method
is more accurate than the MVFOSPA-UUA. However, the
MVFOSPA-UUA is more robust than the FORM-based
method, because it does not need MPP search. Furthermore,
the proposed method has the highest efficiency when com-
pared to both the FORM-based method and MCS. In this
example, both interval variables f and δ are divided into
1000 subintervals, respectively. The total numbers of func-
tion evaluations is 103 · 103 · (5 · 105

) = 5 · 1011 by using
MCS, which shows that when more than one interval vari-
ables exist in system, the computational burden using MCS
is extremely huge.

5 Conclusions

Based on the interval algorithm and MVFOSPA, a novel
UUA method has been proposed for the reliability analy-
sis of structural systems with both epistemic and aleatory
uncertainties. The method uses a mixture of both random
and interval variables rather than only random variables for
considering both types of uncertainties that exist widely
in the engineering practice. Results of the three examples
show that the proposed method is effective and it is gen-
erally more robust than the FORM-based method because
it does not requires the MPP search, which is an optimiza-
tion process. In some cases, there are more than one MPPs
or the MPP search process does not converge. Furthermore,
the proposed method is superior to both the FORM-based
method and MCS in terms of the computational efficiency.
The examples in the paper also show that MVFOSPA-UUA
is more accurate than the FORM-based method when many
non-normal variables exist in the system.

It should be noted that the proposed method has some
limitations. It is an approximate method that uses the first
order Taylor series surrogate for its original performance
function. Such surrogating can cause calculation errors in
the reliability estimation, especially for highly nonlinear
performance function. Therefore, the interval bounds cal-
culated by using the proposed method are approximate
solution rather than exact solution. Extension of the method
for handling multiple correlated performance functions and
improving the computational accuracy will be considered in
our future work.
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